scholarly journals The most general second-order field equations of bi-scalar-tensor theory in four dimensions

2015 ◽  
Vol 2015 (7) ◽  
Author(s):  
Seiju Ohashi ◽  
Norihiro Tanahashi ◽  
Tsutomu Kobayashi ◽  
Masahide Yamaguchi
1977 ◽  
Vol 30 (1) ◽  
pp. 109 ◽  
Author(s):  
DRK Reddy

Plane symmetric solutions of a scalar-tensor theory proposed by Dunn have been obtained. These solutions are observed to be similar to the plane symmetric solutions of the field equations corresponding to zero mass scalar fields obtained by Patel. It is found that the empty space-times of general relativity discussed by Taub and by Bera are obtained as special cases.


2019 ◽  
Vol 28 (04) ◽  
pp. 1950070
Author(s):  
Muzaffer Adak ◽  
Tekin Dereli ◽  
Yorgo Şenikoğlu

The variational field equations of Brans–Dicke scalar-tensor theory of gravitation are given in a non-Riemannian setting in the language of exterior differential forms over four-dimensional spacetimes. A conformally rescaled Robinson–Trautman metric together with the Brans–Dicke scalar field are used to characterize algebraically special Robinson–Trautman spacetimes. All the relevant tensors are worked out in a complex null basis and given explicitly in an appendix for future reference. Some special families of solutions are also given and discussed.


Author(s):  
Mark D. Roberts

If one assumes higher dimensions and that dimensional reduction from higher dimensions produces scalar-tensor theory and also that Palatini variation is the correct method of varying scalar-tensor theory then spacetime is nonmetric. Palatini variation of Jordan frame lagrangians gives an equation relating the dilaton to the object of non-metricity and hence the existence of the dilaton implies that the spacetime connection is more general than that given soley by the Christoffel symbol of general relativity. Transferring from Jordan to Einstein frame, which connection, lagrangian, field equations and stress conservation equations occur are discussed: it is found that the Jordan frame has more information, this can be expressed in several ways, the simplest is that the extra information corresponds to the function multiplying the Ricci scalar in the action. The Einstein frame has the advantages that stress conservation implies no currents and that the field equations are easier to work with. This is illustrated by application to Robertson-Walker spacetime.


2004 ◽  
Vol 13 (06) ◽  
pp. 1073-1083
Author(s):  
ASIT BANERJEE ◽  
UJJAL DEBNATH ◽  
SUBENOY CHAKRABORTY

The generalized Szekeres family of solution for quasi-spherical space–time of higher dimensions are obtained in the scalar tensor theory of gravitation. Brans–Dicke field equations expressed in Dicke's revised units are exhaustively solved for all the subfamilies of the said family. A particular group of solutions may also be interpreted as due to the presence of the so-called C-field of Hoyle and Narlikar and for a chosen sign of the coupling parameter. The models show either expansion from a big bang type of singularity or a collapse with the turning point at a lower bound. There is one particular case which starts from the big bang, reaches a maximum and collapses with the in course of time to a crunch.


1998 ◽  
Vol 13 (24) ◽  
pp. 4163-4171 ◽  
Author(s):  
B. MODAK ◽  
S. KAMILYA ◽  
S. BISWAS

In this work we study a general scalar-tensor theory in which the coupling and potential functions are determined from Noether symmetry arguments. We also obtain exact solutions of the field equations and found that the universe asymptotically follows an exponential expansion having no graceful exit. The study of the functional form of ω(φ) reveals that the theory asymptotically becomes an attractor of general relativity. We restrict ourselves to spatially homogeneous, isotropic flat universe.


2017 ◽  
Vol 95 (2) ◽  
pp. 179-183 ◽  
Author(s):  
M. Vijaya Santhi ◽  
V.U.M. Rao ◽  
Y. Aditya

In this paper, we consider Bianchi type-VI0 space–time filled with anisotropic modified holographic Ricci dark energy in a scalar–tensor theory proposed by Brans–Dicke (Phys. Rev. 124, 925 (1961)). The field equations in this scalar–tensor theory, have been solved for the following physically relevant assumptions: (i) the scalar field ([Formula: see text]) is proportional to average scale factor (a(t)), (ii) expansion scalar (θ) in the model is proportional to shear scalar (σ). It has been observed that the presented universe is in an accelerating phase at the present epoch, which is in good agreement with the recent astronomical observations. We have also discussed some other properties of the obtained model.


Sign in / Sign up

Export Citation Format

Share Document