scholarly journals Tensor networks from kinematic space

2016 ◽  
Vol 2016 (7) ◽  
Author(s):  
Bartlomiej Czech ◽  
Lampros Lamprou ◽  
Samuel McCandlish ◽  
James Sully
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Aranya Bhattacharya ◽  
Anindya Chanda ◽  
Sabyasachi Maulik ◽  
Christian Northe ◽  
Shibaji Roy

Abstract Recently, remarkable progress in recovering the Page curve of an evaporating black hole (BH) in Jackiw-Teitelboim gravity has been achieved through use of Quantum Extremal surfaces (QES). Multi-boundary Wormhole (MbW) models have been crucial in parallel model building in three dimensions. Motivated by this we here use the latter models to compute the subregion complexity of the Hawking quanta of the evaporating BH in AdS3 and obtain the Page curve associated with this information theoretic measure. We use three- and n-boundary wormhole constructions to elucidate our computations of volumes below the Hubeny-Rangamani-Takayanagi (HRT) surfaces at different times. Time is represented by the growing length of the throat horizons corresponding to smaller exits of the multi-boundary wormhole and the evaporating bigger exit shrinks with evolving time. We track the change in choice of HRT surfaces with time and plot the volume with time. The smooth transition of Page curve is realized by a discontinuous jump at Page time in volume subregion complexity plots and the usual Page transition is realized as a phase transition due to the inclusion of the island in this context. We discuss mathematical intricacies and physical insights regarding the inclusion of the extra volume at Page time. The analysis is backed by calculations and lessons from kinematic space and tensor networks.


Author(s):  
Michael Atiyah ◽  
Matilde Marcolli

Abstract This paper, completed in its present form by the second author after the first author passed away in 2019, describes an intended continuation of the previous joint work on anyons in geometric models of matter. This part outlines a construction of anyon tensor networks based on four-dimensional orbifold geometries and braid representations associated with surface-braids defined by multisections of the orbifold normal bundle of the surface of orbifold points.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Anna Mullin ◽  
Stuart Nicholls ◽  
Holly Pacey ◽  
Michael Parker ◽  
Martin White ◽  
...  

Abstract We present a novel technique for the analysis of proton-proton collision events from the ATLAS and CMS experiments at the Large Hadron Collider. For a given final state and choice of kinematic variables, we build a graph network in which the individual events appear as weighted nodes, with edges between events defined by their distance in kinematic space. We then show that it is possible to calculate local metrics of the network that serve as event-by-event variables for separating signal and background processes, and we evaluate these for a number of different networks that are derived from different distance metrics. Using a supersymmetric electroweakino and stop production as examples, we construct prototype analyses that take account of the fact that the number of simulated Monte Carlo events used in an LHC analysis may differ from the number of events expected in the LHC dataset, allowing an accurate background estimate for a particle search at the LHC to be derived. For the electroweakino example, we show that the use of network variables outperforms both cut-and-count analyses that use the original variables and a boosted decision tree trained on the original variables. The stop example, deliberately chosen to be difficult to exclude due its kinematic similarity with the top background, demonstrates that network variables are not automatically sensitive to BSM physics. Nevertheless, we identify local network metrics that show promise if their robustness under certain assumptions of node-weighted networks can be confirmed.


2021 ◽  
Author(s):  
Rui Huang ◽  
Xiaoqing Tan ◽  
Qingshan Xu
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. Ramesh Chandra ◽  
Jan de Boer ◽  
Mario Flory ◽  
Michal P. Heller ◽  
Sergio Hörtner ◽  
...  

Abstract We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic $$ T\overline{T} $$ T T ¯ , we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.


2021 ◽  
Vol 21 (13&14) ◽  
pp. 1081-1090
Author(s):  
Jose I. Latorre ◽  
German Sierra

We present a construction of highly entangled states defined on the topology of a platonic solid using tensor networks based on ancillary Absolute Maximally Entangled (AME) states. We illustrate the idea using the example of a quantum state based on AME(5,2) over a dodecahedron. We analyze the entropy of such states on many different partitions, and observe that they come on integer numbers and are almost maximal. We also observe that all platonic solids accept the construction of AME states based on Reed-Solomon codes since their number of facets, vertices and edges are always a prime number plus one.


Sign in / Sign up

Export Citation Format

Share Document