scholarly journals Topological shadows and complexity of islands in multiboundary wormholes

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Aranya Bhattacharya ◽  
Anindya Chanda ◽  
Sabyasachi Maulik ◽  
Christian Northe ◽  
Shibaji Roy

Abstract Recently, remarkable progress in recovering the Page curve of an evaporating black hole (BH) in Jackiw-Teitelboim gravity has been achieved through use of Quantum Extremal surfaces (QES). Multi-boundary Wormhole (MbW) models have been crucial in parallel model building in three dimensions. Motivated by this we here use the latter models to compute the subregion complexity of the Hawking quanta of the evaporating BH in AdS3 and obtain the Page curve associated with this information theoretic measure. We use three- and n-boundary wormhole constructions to elucidate our computations of volumes below the Hubeny-Rangamani-Takayanagi (HRT) surfaces at different times. Time is represented by the growing length of the throat horizons corresponding to smaller exits of the multi-boundary wormhole and the evaporating bigger exit shrinks with evolving time. We track the change in choice of HRT surfaces with time and plot the volume with time. The smooth transition of Page curve is realized by a discontinuous jump at Page time in volume subregion complexity plots and the usual Page transition is realized as a phase transition due to the inclusion of the island in this context. We discuss mathematical intricacies and physical insights regarding the inclusion of the extra volume at Page time. The analysis is backed by calculations and lessons from kinematic space and tensor networks.

Open Physics ◽  
2014 ◽  
Vol 12 (9) ◽  
Author(s):  
Jalil Naji ◽  
Saba Heydari ◽  
Ali Amjadi

AbstractIn this paper, we consider a charged rotating black hole in three dimensions with a scalar charge, and discuss thermodynamics quantities. We find effects of the black hole parameters on the temperature, entropy, free energy, total energy and specific heat. We also investigate the stability of the black hole and study phase transition. We consider the first law of thermodynamics and find that satisfied.


2021 ◽  
pp. 168461
Author(s):  
Kartheek Hegde ◽  
Naveena Kumara A. ◽  
Ahmed Rizwan C.L. ◽  
Md Sabir Ali ◽  
Ajith K.M.

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 858
Author(s):  
Dongshan He ◽  
Qingyu Cai

In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342030 ◽  
Author(s):  
KYRIAKOS PAPADODIMAS ◽  
SUVRAT RAJU

We point out that nonperturbative effects in quantum gravity are sufficient to reconcile the process of black hole evaporation with quantum mechanics. In ordinary processes, these corrections are unimportant because they are suppressed by e-S. However, they gain relevance in information-theoretic considerations because their small size is offset by the corresponding largeness of the Hilbert space. In particular, we show how such corrections can cause the von Neumann entropy of the emitted Hawking quanta to decrease after the Page time, without modifying the thermal nature of each emitted quantum. Second, we show that exponentially suppressed commutators between operators inside and outside the black hole are sufficient to resolve paradoxes associated with the strong subadditivity of entropy without any dramatic modifications of the geometry near the horizon.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


2021 ◽  
Vol 36 (10) ◽  
pp. 2150065
Author(s):  
Aarti Sharma ◽  
Pooja Thakur ◽  
Girish Kumar ◽  
Anil Kumar

The information theoretic concepts are crucial to study the quantum mechanical systems. In this paper, the information densities of [Formula: see text]-symmetric potential have been demonstrated and their properties deeply analyzed. The position space and momentum space information entropy is obtained and Bialynicki-Birula–Mycielski inequality is saturated for different parameters of the potential. Some interesting features of information entropy have been discussed. The variation in these entropies is described which gets saturated for specific values of the parameter. These have also been analyzed for the [Formula: see text]-symmetry breaking case. Further, the entropy squeezing phenomenon has been investigated in position space as well as momentum space. Interestingly, [Formula: see text] phase transition conjectures the entropy squeezing in position space and momentum space.


2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


Sign in / Sign up

Export Citation Format

Share Document