scholarly journals n-point correlators of twist-2 operators in SU(N) Yang-Mills theory to the lowest perturbative order

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Marco Bochicchio ◽  
Mauro Papinutto ◽  
Francesco Scardino

Abstract We compute, to the lowest perturbative order in SU(N) Yang-Mills theory, n-point correlators in the coordinate and momentum representation of the gauge-invariant twist-2 operators with maximal spin along the p+ direction, both in Minkowskian and — by analytic continuation — Euclidean space-time. We also construct the corresponding generating functionals. Remarkably, they have the structure of the logarithm of a functional determinant of the identity plus a term involving the effective propagators that act on the appropriate source fields.

2000 ◽  
Vol 78 (8) ◽  
pp. 769-777 ◽  
Author(s):  
A T Suzuki ◽  
A GM Schmidt

The well-known D-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative-dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature. PACS Nos.: 02.90+p, 11.15Bt, 12.38Bx


2002 ◽  
Vol 17 (supp01) ◽  
pp. 119-136 ◽  
Author(s):  
A. M. POLYAKOV

In this article I attempt to collect some ideas, opinions and formulae which may be useful in solving the problem of gauge/string/space-time correspondence. This includes the validity of D-brane representation, counting of gauge-invariant words, relations between the null states and the Yang-Mills equations and the discussion of the strong coupling limit of the string sigma model. The article is based on the talk given at the "Odyssey 2001" conference.


1999 ◽  
Vol 14 (13) ◽  
pp. 869-877 ◽  
Author(s):  
B. CHEN ◽  
H. ITOYAMA ◽  
H. KIHARA

The non-Abelian Berry phase is computed in the T dualized quantum mechanics obtained from the USp (2k) matrix model. Integrating the fermions, we find that each of the space–time points [Formula: see text] is equipped with a pair of su(2) Lie algebra valued pointlike singularities located at a distance m(f) from the orientifold surface. On a four-dimensional paraboloid embedded in the five-dimensional Euclidean space, these singularities are recognized as the BPST instantons.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov

Abstract We construct a new covariant action for “flat” self-dual gravity in four space-time dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the light-cone gauge, the action reproduces the expected chiral interaction of Siegel. The new action is in many ways analogous to the known covariant action for self-dual Yang-Mills theory. There is also a sense in which the new self-dual gravity action exhibits the double copy of self-dual Yang-Mills structure.


2005 ◽  
Vol 72 (10) ◽  
Author(s):  
M. A. L. Capri ◽  
D. Dudal ◽  
J. A. Gracey ◽  
V. E. R. Lemes ◽  
R. F. Sobreiro ◽  
...  
Keyword(s):  

2006 ◽  
Vol 21 (23n24) ◽  
pp. 4627-4761 ◽  
Author(s):  
OLIVER J. ROSTEN

Within the framework of the Exact Renormalization Group, a manifestly gauge invariant calculus is constructed for SU (N) Yang–Mills. The methodology is comprehensively illustrated with a proof, to all orders in perturbation theory, that the β function has no explicit dependence on either the seed action or details of the covariantization of the cutoff. The cancellation of these nonuniversal contributions is done in an entirely diagrammatic fashion.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


2007 ◽  
Vol 16 (06) ◽  
pp. 1027-1041 ◽  
Author(s):  
EDUARDO A. NOTTE-CUELLO ◽  
WALDYR A. RODRIGUES

Using the Clifford bundle formalism, a Lagrangian theory of the Yang–Mills type (with a gauge fixing term and an auto interacting term) for the gravitational field in Minkowski space–time is presented. It is shown how two simple hypotheses permit the interpretation of the formalism in terms of effective Lorentzian or teleparallel geometries. In the case of a Lorentzian geometry interpretation of the theory, the field equations are shown to be equivalent to Einstein's equations.


2018 ◽  
Vol 191 ◽  
pp. 06001
Author(s):  
A.V. Ivanov

This work is related to the asymptotic approach in the renormalization theory and its problems. As the main example, the Yang-Mills theory in four-dimensional space-time is considered. It has been shown earlier [16] that using the asymptotic of the bare coupling constant one can find an expression for the renormalized effective action, however, this formula has problems (divergence ln " and infinite series). This work shows the relation of these values and provides an answer for the renormalized effective action.


Sign in / Sign up

Export Citation Format

Share Document