scholarly journals Bending the Bruhat-Tits tree. Part II. The p-adic BTZ black hole and local diffeomorphism on the Bruhat-Tits tree

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Lin Chen ◽  
Xirong Liu ◽  
Ling-Yan Hung

Abstract In this sequel to [1], we take up a second approach in bending the Bruhat-Tits tree. Inspired by the BTZ black hole connection, we demonstrate that one can transplant it to the Bruhat-Tits tree, at the cost of defining a novel “exponential function” on the p-adic numbers that is hinted by the BT tree. We demonstrate that the PGL(2, Qp) Wilson lines [2] evaluated on this analogue BTZ connection is indeed consistent with correlation functions of a CFT at finite temperatures. We demonstrate that these results match up with the tensor network reconstruction of the p-adic AdS/CFT with a different cutoff surface at the asymptotic boundary, and give explicit coordinate transformations that relate the analogue p-adic BTZ background and the “pure” Bruhat-Tits tree background. This is an interesting demonstration that despite the purported lack of descendents in p-adic CFTs, there exists non-trivial local Weyl transformations in the CFT corresponding to diffeomorphism in the Bruhat-Tits tree.

1999 ◽  
Vol 14 (31) ◽  
pp. 2157-2168 ◽  
Author(s):  
L. CHEKHOV

The AdS/CFT correspondence is established for the AdS3 space compactified on a solid torus with the CFT field on the boundary. Correlation functions that correspond to the bulk theory at finite temperature are obtained in the regularization a la Gubser, Klebanov, and Polyakov. The BTZ black hole solutions in AdS3 are T-dual to the solution in the AdS3 space without singularity.


2020 ◽  
Vol 12 (7) ◽  
pp. 2767 ◽  
Author(s):  
Víctor Yepes ◽  
José V. Martí ◽  
José García

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
D. Rodriguez-Gomez ◽  
J.G. Russo

Abstract We compute thermal 2-point correlation functions in the black brane AdS5 background dual to 4d CFT’s at finite temperature for operators of large scaling dimension. We find a formula that matches the expected structure of the OPE. It exhibits an exponentiation property, whose origin we explain. We also compute the first correction to the two-point function due to graviton emission, which encodes the proper time from the event horizon to the black hole singularity.


2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

2011 ◽  
Vol 2011 (8) ◽  
Author(s):  
Justin R. David ◽  
Abhishake Sadhukhan
Keyword(s):  

2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Piyali Bhar ◽  
Ayan Banerjee

In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


Sign in / Sign up

Export Citation Format

Share Document