scholarly journals Smooth bubbling geometries without supersymmetry

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ibrahima Bah ◽  
Pierre Heidmann

Abstract We construct the first smooth bubbling geometries using the Weyl formalism. The solutions are obtained from Einstein theory coupled to a two-form gauge field in six dimensions with two compact directions. We classify the charged Weyl solutions in this framework. Smooth solutions consist of a chain of Kaluza-Klein bubbles that can be neutral or wrapped by electromagnetic fluxes, and are free of curvature and conical singularities. We discuss how such topological structures are prevented from gravitational collapse without struts. When embedded in type IIB, the class of solutions describes D1-D5-KKm solutions in the non-BPS regime, and the smooth bubbling solutions have the same conserved charges as a static four-dimensional non-extremal Cvetic-Youm black hole.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Thiago Prudêncio

A Kaluza-Klein state configuration in black-hole qubit correspondence (BHQC) is considered in cyclic cycles of its Bekenstein-Hawking entropy. After a sequence of Peccei-Quinn transformations on the Kaluza-Klein state in cyclic cycles alternating between large and small extremal black hole (EBH) configurations, we obtain the corresponding amount of variation in the initial Bekenstein-Hawking entropy in cyclic cycles. We consider different cases where the EBH state alternates between small and large states. We then demonstrate that the total Bekenstein-Hawking entropy increases in these processes.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


1993 ◽  
Vol 47 (4) ◽  
pp. 1465-1470 ◽  
Author(s):  
David Hochberg ◽  
Thomas W. Kephart
Keyword(s):  

2012 ◽  
Vol 21 (11) ◽  
pp. 1242010
Author(s):  
ARIEL EDERY ◽  
HUGUES BEAUCHESNE

Recent numerical simulations of gravitational collapse show that there exists a special foliation of the spacetime where matter and entropy accumulate directly on the inside of the horizon surface. In this foliation, the time coincides with the proper time of the asymptotic static observer (ASO) and for spherical symmetry, this corresponds to isotropic co-ordinates. In this gauge, the three-volume in the interior shrinks to zero and only the horizon area remains at the end of collapse. In a different foliation, matter and entropy accumulate in the volume. The entropy is however independent of the foliation. Black hole holography is therefore a mapping from an arbitrary foliation, where information resides in the volume, to the special ASO frame, where it resides directly on the horizon surface.


2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550025 ◽  
Author(s):  
João Marto ◽  
Yaser Tavakoli ◽  
Paulo Vargas Moniz

We consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology (LQC), we analyze the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter γ, there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case γ ~ 1, we find an interesting tracking behavior between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a nonsingular black hole is forming, at the corresponding collapse final stages.


2008 ◽  
Vol 25 (12) ◽  
pp. 125004 ◽  
Author(s):  
David Kastor ◽  
Sourya Ray ◽  
Jennie Traschen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document