scholarly journals Complementarity of DM searches in a consistent simplified model: the case of Z ′

2016 ◽  
Vol 2016 (10) ◽  
Author(s):  
Thomas Jacques ◽  
Andrey Katz ◽  
Enrico Morgante ◽  
Davide Racco ◽  
Mohamed Rameez ◽  
...  

Abstract We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC, direct and indirect detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy Z ′ mediates the interactions between the SM and the DM. We find that for heavy dark matter indirect detection provides the strongest bounds on this scenario, while IceCube bounds are typically stronger than those from direct detection. The LHC constraints are dominant for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun and the Galactic Center are either $$ b\overline{b} $$ b b ¯ or $$ t\overline{t} $$ t t ¯ , while the heavy DM annihilation is completely dominated by Zh channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast IceCube constraints to allow proper comparison with constraints from direct and indirect detection experiments and LHC exclusions.

Author(s):  
Ivania M. Ávila ◽  
Valentina De Romeri ◽  
Laura Duarte ◽  
José W. F. Valle

AbstractWe reexamine the minimal Singlet $$+$$ + Triplet Scotogenic Model, where dark matter is the mediator of neutrino mass generation. We assume it to be a scalar WIMP, whose stability follows from the same $${\mathbb {Z}}_{2}$$ Z 2 symmetry that leads to the radiative origin of neutrino masses. The scheme is the minimal one that allows for solar and atmospheric mass scales to be generated. We perform a full numerical analysis of the signatures expected at dark matter as well as collider experiments. We identify parameter regions where dark matter predictions agree with theoretical and experimental constraints, such as neutrino oscillations, Higgs data, dark matter relic abundance and direct detection searches. We also present forecasts for near future direct and indirect detection experiments. These will further probe the parameter space. Finally, we explore collider signatures associated with the mono-jet channel at the LHC, highlighting the existence of a viable light dark matter mass range.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cédric Delaunay ◽  
Teng Ma ◽  
Yotam Soreq

Abstract We consider models of decaying spin-1 dark matter whose dominant coupling to the standard model sector is through a dark-Higgs Yukawa portal connecting a TeV-scale vector-like lepton to the standard model (right-handed) electron. Below the electron-positron threshold, dark matter has very slow, loop-suppressed decays to photons and (electron) neutrinos, and is stable on cosmological time-scale for sufficiently small gauge coupling values. Its relic abundance is set by in-equilibrium dark lepton decays, through the freeze-in mechanism. We show that this model accommodates the observed dark matter abundance for natural values of its parameters and a dark matter mass in the ∼ 5 keV to 1 MeV range, while evading constraints from direct detection, indirect detection, stellar cooling and cosmology. We also consider the possibility of a nonzero gauge kinetic mixing with the standard model hypercharge field, which is found to yield a mild impact on the model’s phenomenology.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Tanushree Basak ◽  
Baradhwaj Coleppa ◽  
Kousik Loho

Abstract We revisit the two real singlet extension of the Standard Model with a $$ {Z}_2\times {Z}_2^{\prime } $$ Z 2 × Z 2 ′ symmetry. One of the singlet scalars S2, by virtue of an unbroken $$ {Z}_2^{\prime } $$ Z 2 ′ symmetry, plays the role of a stable dark matter candidate. The other scalar S1, with spontaneously broken Z2-symmetry, mixes with the SM Higgs boson and acts as the scalar mediator. We analyze the model by putting in the entire set of theoretical and recent experimental constraints. The latest bounds from direct detection Xenon1T experiment severely restricts the allowed region of parameter space of couplings. To ensure the dark matter satisfies the relic abundance criterion, we rely on the Breit-Wigner enhanced annihilation cross-section. Further, we study the viability of explaining the observed gamma-ray excess in the galactic center in this model with a dark matter of mass in the ∼ 36 − 51 GeV window and present our conclusions.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tommi Alanne ◽  
Giorgio Arcadi ◽  
Florian Goertz ◽  
Valentin Tenorth ◽  
Stefan Vogl

Abstract We systematically explore the phenomenology of the recently proposed extended dark matter effective field theory (eDMeft), which allows for a consistent effective description of DM scenarios across different energy scales. The framework remains applicable at collider energies and is capable of reproducing the correct relic abundance by including a dynamical mediator particle to the dark sector, while maintaining correlations dictated by gauge invariance in a ‘model-independent’ way. Taking into account present and future constraints from direct- and indirect-detection experiments, from collider searches for missing energy and for scalar resonances in vector-boson, di-jet, and Higgs-pair final states, as well as from the relic abundance as measured by Planck, we determine viable regions in the parameter space, both for scalar and pseudoscalar mediator. In particular, we point out regions where cancellations in the direct-detection cross section appear leading to allowed islands for scalar mediators that could be missed in a naive simplified-model approach, but are present in the full D = 5 effective theory, as well as a general opening of the parameter space due to consistently considering all operators at a given mass dimension. Thus, canonical WIMP-like scenarios can survive even the next generation of direct-detection experiments in different mass regimes, while potentially becoming testable at the high-luminosity LHC.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Chiara Arina ◽  
Andrew Cheek ◽  
Ken Mimasu ◽  
Luca Pagani

AbstractWe consider the treatment of fermionic dark matter interacting with photons via dimension-5 and -6 effective operators, arguing that one should always use hypercharge gauge field form factors, instead of those of the photon. Beyond the simple observation that the electromagnetic form factor description breaks down at the electroweak scale, we show how the additional couplings to the Z boson predicted by the hypercharge form factors modify the relic density calculation and indirect detection limits for dark matter masses of a few tens of GeV and above. Furthermore, constraints from the invisible Z decay width can be competitive for masses below 10 GeV. We review the phenomenology of hypercharge form factors at the LHC as well as for direct and indirect detection experiments. We highlight where the electromagnetic and hypercharge descriptions lead to wildly different conclusions about the viable parameter space and the relative sensitivity of various probes, namely vector boson fusion versus mono-jet constraints from the LHC, and indirect versus direct searches, for larger dark matter masses. We find that the dimension-5 operators are strongly constrained by direct detection bounds, while for dimension-6 operators LHC mono-jet searches are competitive or better than the other probes we consider.


2015 ◽  
Vol 30 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Wei Chao

In this paper we work in the framework of a radiative seesaw model with triplet fermion Σ. Due to the Z2 discrete flavor symmetry, the lightest neutral component of Σ is stable and thus can be a dark matter candidate. Its mass can be solely determined by the dark matter relic abundance, which is bout 2.594 TeV. It can still constitute 30% of the dark matter when considering constraints from dark matter indirect detection experiments. The model also predict a dark matter-nucleus scattering cross-section that would be accessible with future dark matter direct detection searches. We further investigate constraints on the parameter space of the model from the lepton-flavor-violating processes and neutrino transition magnetic moments, induced by the Yukawa interaction of the Σ with the left-handed lepton doublets.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fabiola Fortuna ◽  
Pablo Roig ◽  
José Wudka

Abstract We analyze interactions between dark matter and standard model particles with spin one mediators in an effective field theory framework. In this paper, we are considering dark particles masses in the range from a few MeV to the mass of the Z boson. We use bounds from different experiments: Z invisible decay width, relic density, direct detection experiments, and indirect detection limits from the search of gamma-ray emissions and positron fluxes. We obtain solutions corresponding to operators with antisymmetric tensor mediators that fulfill all those requirements within our approach.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zexi Hu ◽  
Chengfeng Cai ◽  
Yi-Lei Tang ◽  
Zhao-Huan Yu ◽  
Hong-Hao Zhang

Abstract We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.


Sign in / Sign up

Export Citation Format

Share Document