scholarly journals From Hagedorn to Lee-Yang: partition functions of $$ \mathcal{N} $$ = 4 SYM theory at finite N

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Alexander T. Kristensson ◽  
Matthias Wilhelm

Abstract We study the thermodynamics of the maximally supersymmetric Yang-Mills theory with gauge group U(N ) on ℝ × S3, dual to type IIB superstring theory on AdS5× S5. While both theories are well-known to exhibit Hagedorn behavior at infinite N , we find evidence that this is replaced by Lee-Yang behavior at large but finite N : the zeros of the partition function condense into two arcs in the complex temperature plane that pinch the real axis at the temperature of the confinement-deconfinement transition. Concretely, we demonstrate this for the free theory via exact calculations of the (unrefined and refined) partition functions at N ≤ 7 for the $$ \mathfrak{su} $$ su (2) sector containing two complex scalars, as well as at N ≤ 5 for the $$ \mathfrak{su} $$ su (2|3) sector containing 3 complex scalars and 2 fermions. In order to obtain these explicit results, we use a Molien-Weyl formula for arbitrary field content, utilizing the equivalence of the partition function with what is known to mathematicians as the Poincaré series of trace algebras of generic matrices. Via this Molien-Weyl formula, we also generate exact results for larger sectors.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
F. Aprile ◽  
J. M. Drummond ◽  
P. Heslop ◽  
H. Paul ◽  
F. Sanfilippo ◽  
...  

Abstract We consider a set of half-BPS operators in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory which are appropriate for describing single-particle states of superstring theory on AdS5× S5. These single-particle operators are defined to have vanishing two-point functions with all multi-trace operators and therefore correspond to admixtures of single- and multi-traces. We find explicit formulae for all single-particle operators and for their two-point function normalisation. We show that single-particle U(N) operators belong to the SU(N) subspace, thus for length greater than one they are simply the SU(N) single-particle operators. Then, we point out that at large N, as the length of the operator increases, the single-particle operator naturally interpolates between the single-trace and the S3 giant graviton. At finite N, the multi-particle basis, obtained by taking products of the single-particle operators, gives a new basis for all half-BPS states, and this new basis naturally cuts off when the length of any of the single-particle operators exceeds the number of colours. From the two-point function orthogonality we prove a multipoint orthogonality theorem which implies vanishing of all near-extremal correlators. We then compute all maximally and next-to-maximally extremal free correlators, and we discuss features of the correlators when the extremality is lowered. Finally, we describe a half-BPS projection of the operator product expansion on the multi-particle basis which provides an alternative construction of four- and higher-point functions in the free theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large-N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2, ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N2− 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R4 and D4R4 contact inter-actions, which, for the R4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2, ℤ) invariant.


2018 ◽  
Vol 4 (6) ◽  
Author(s):  
Joseph Hayling ◽  
Rodolfo Panerai ◽  
Constantinos Papageorgakis

A formula was recently proposed for the perturbative partition function of certain \mathcal N=1𝒩=1 gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an \mathcal N=1𝒩=1 toroidal-quiver theory (a double orbifold of \mathcal N=4𝒩=4 super Yang–Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the \mathcal N=1𝒩=1 partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Francesco Fucito ◽  
Jose Francisco Morales ◽  
Massimiliano Ronzani ◽  
Ekaterina Sysoeva ◽  
...  

AbstractWe compute the $$\mathcal{N}=2$$ N = 2 supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kähler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $$\mathbb {C}^2$$ C 2 . The evaluation of these residues is greatly simplified by using an “abstruse duality” that relates the residues at the poles of the one-loop and instanton parts of the $$\mathbb {C}^2$$ C 2 partition function. As particular cases, our formulae compute the SU(2) and SU(3) equivariant Donaldson invariants of $$\mathbb {P}^2$$ P 2 and $$\mathbb {F}_n$$ F n and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the SU(2) case. Finally, we show that the U(1) self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $$\mathcal {N}=2$$ N = 2 analog of the $$\mathcal {N}=4$$ N = 4 holomorphic anomaly equations.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hannes Malcha ◽  
Hermann Nicolai

Abstract Supersymmetric Yang-Mills theories can be characterized by a non-local and non-linear transformation of the bosonic fields (Nicolai map) mapping the interacting functional measure to that of a free theory, such that the Jacobi determinant of the transformation equals the product of the fermionic determinants obtained by integrating out the gauginos and ghosts at least on the gauge hypersurface. While this transformation has been known so far only for the Landau gauge and to third order in the Yang-Mills coupling, we here extend the construction to a large class of (possibly non-linear and non-local) gauges, and exhibit the conditions for all statements to remain valid off the gauge hypersurface. Finally, we present explicit results to second order in the axial gauge and to fourth order in the Landau gauge.


Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Alessandro Tanzini

AbstractWe study the discrete flows generated by the symmetry group of the BPS quivers for Calabi–Yau geometries describing five-dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with $$\tau $$ τ -functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five-dimensional SU(2) pure super Yang–Mills and $$N_f=2$$ N f = 2 on a circle.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2∗ theory with respect to the squashing parameter b and mass parameter m, evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1/N expansion, these fourth derivatives are modular invariant functions of (τ,$$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1/N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1/N, they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS5× S5.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Diego Delmastro ◽  
Jaume Gomis

Abstract 4d$$ \mathcal{N} $$ N = 1 super Yang-Mills (SYM) with simply connected gauge group G has h gapped vacua arising from the spontaneously broken discrete R-symmetry, where h is the dual Coxeter number of G. Therefore, the theory admits stable domain walls interpolating between any two vacua, but it is a nonperturbative problem to determine the low energy theory on the domain wall. We put forward an explicit answer to this question for all the domain walls for G = SU(N), Sp(N), Spin(N) and G2, and for the minimal domain wall connecting neighboring vacua for arbitrary G. We propose that the domain wall theories support specific nontrivial topological quantum field theories (TQFTs), which include the Chern-Simons theory proposed long ago by Acharya-Vafa for SU(N). We provide nontrivial evidence for our proposals by exactly matching renormalization group invariant partition functions twisted by global symmetries of SYM computed in the ultraviolet with those computed in our proposed infrared TQFTs. A crucial element in this matching is constructing the Hilbert space of spin TQFTs, that is, theories that depend on the spin structure of spacetime and admit fermionic states — a subject we delve into in some detail.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Francesco Alessio ◽  
Glenn Barnich

Abstract The temperature inversion symmetry of the partition function of the electromagnetic field in the set-up of the Casimir effect is extended to full modular transformations by turning on a purely imaginary chemical potential for adapted spin angular momentum. The extended partition function is expressed in terms of a real analytic Eisenstein series. These results become transparent after explicitly showing equivalence of the partition functions for Maxwell’s theory between perfectly conducting parallel plates and for a massless scalar with periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document