Deconstructing little strings with $\mathcal{N}=1$ gauge theories on ellipsoids
A formula was recently proposed for the perturbative partition function of certain \mathcal N=1𝒩=1 gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an \mathcal N=1𝒩=1 toroidal-quiver theory (a double orbifold of \mathcal N=4𝒩=4 super Yang–Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the \mathcal N=1𝒩=1 partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.