scholarly journals Deconstructing little strings with $\mathcal{N}=1$ gauge theories on ellipsoids

2018 ◽  
Vol 4 (6) ◽  
Author(s):  
Joseph Hayling ◽  
Rodolfo Panerai ◽  
Constantinos Papageorgakis

A formula was recently proposed for the perturbative partition function of certain \mathcal N=1𝒩=1 gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an \mathcal N=1𝒩=1 toroidal-quiver theory (a double orbifold of \mathcal N=4𝒩=4 super Yang–Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the \mathcal N=1𝒩=1 partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Francesco Fucito ◽  
Jose Francisco Morales ◽  
Massimiliano Ronzani ◽  
Ekaterina Sysoeva ◽  
...  

AbstractWe compute the $$\mathcal{N}=2$$ N = 2 supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kähler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $$\mathbb {C}^2$$ C 2 . The evaluation of these residues is greatly simplified by using an “abstruse duality” that relates the residues at the poles of the one-loop and instanton parts of the $$\mathbb {C}^2$$ C 2 partition function. As particular cases, our formulae compute the SU(2) and SU(3) equivariant Donaldson invariants of $$\mathbb {P}^2$$ P 2 and $$\mathbb {F}_n$$ F n and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the SU(2) case. Finally, we show that the U(1) self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $$\mathcal {N}=2$$ N = 2 analog of the $$\mathcal {N}=4$$ N = 4 holomorphic anomaly equations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


2011 ◽  
Vol 08 (08) ◽  
pp. 1747-1762 ◽  
Author(s):  
AMIR ABBASS VARSHOVI

A gauge invariant partition function is defined for gauge theories which leads to the standard quantization. It is shown that the descent equations and consequently the consistent anomalies and Schwinger terms can be extracted from this modified partition function naturally.


1993 ◽  
Vol 08 (23) ◽  
pp. 2223-2235 ◽  
Author(s):  
STEPHEN G. NACULICH ◽  
HAROLD A. RIGGS ◽  
HOWARD J. SCHNITZER

We show that two-dimensional SO (N) and Sp (N) Yang-Mills theories without fermions can be interpreted as closed string theories. The terms in the 1/N expansion of the partition function on an orientable or nonorientable manifold ℳ can be associated with maps from a string worldsheet onto ℳ. These maps are unbranched and branched covers of ℳ with an arbitrary number of infinitesimal worldsheet cross-caps mapped to points in ℳ. These string theories differ from SU (N) Yang-Mills string theory in that they involve odd powers of 1/N and require both orientable and nonorientable worldsheets.


2004 ◽  
Vol 19 (24) ◽  
pp. 4127-4163 ◽  
Author(s):  
A. ALEXANDROV ◽  
A. MOROZOV ◽  
A. MIRONOV

Even though matrix model partition functions do not exhaust the entire set of τ-functions relevant for string theory, they seem to be elementary building blocks for many others and they seem to properly capture the fundamental symplicial nature of quantum gravity and string theory. We propose to consider matrix model partition functions as new special functions. Here we restrict our consideration to the finite-size Hermitian 1-matrix model and concentrate mostly on its phase/branch structure arising when the partition function is considered as a D-module. We discuss the role of the CIV–DV prepotential (as generating a possible basis in the linear space of solutions to the Virasoro constraints, but with a lack of understanding of why and how this basis is distinguished).


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hee-Cheol Kim ◽  
Minsung Kim ◽  
Sung-Soo Kim

Abstract We compute the partition function for 6d $$ \mathcal{N} $$ N = 1 SO(2N) gauge theories compactified on a circle with ℤ2 outer automorphism twist. We perform the computation based on 5-brane webs with two O5-planes using topological vertex with two O5-planes. As representative examples, we consider 6d SO(8) and SU(3) gauge theories with ℤ2 twist. We confirm that these partition functions obtained from the topological vertex with O5-planes indeed agree with the elliptic genus computations.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Anton Kapustin ◽  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for $$ \mathcal{N} $$ N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in $$ \mathcal{N} $$ N = 4 gauge theories realized by monopole operators.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
David H. Wu

Abstract $$ \hat{Z} $$ Z ̂ -invariants, which can reconstruct the analytic continuation of the SU(2) Chern-Simons partition functions via Borel resummation, were discovered by GPV and have been conjectured to be a new homological invariant of 3-manifolds which can shed light onto the superconformal and topologically twisted index of 3d $$ \mathcal{N} $$ N = 2 theories proposed by GPPV. In particular, the resurgent analysis of $$ \hat{Z} $$ Z ̂ has been fruitful in discovering analytic properties of the WRT invariants. The resurgent analysis of these $$ \hat{Z} $$ Z ̂ -invariants has been performed for the cases of Σ(2, 3, 5), Σ(2, 3, 7) by GMP, Σ(2, 5, 7) by Chun, and, more recently, some additional Seifert manifolds by Chung and Kucharski, independently. In this paper, we extend and generalize the resurgent analysis of $$ \hat{Z} $$ Z ̂ on a family of Brieskorn homology spheres Σ(2, 3, 6n + 5) where n ∈ ℤ+ and 6n + 5 is a prime. By deriving $$ \hat{Z} $$ Z ̂ for Σ(2, 3, 6n + 5) according to GPPV and Hikami, we provide a formula where one can quickly compute the non-perturbative contributions to the full analytic continuation of SU(2) Chern-Simons partition function.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Arash Arabi Ardehali ◽  
Junho Hong

Abstract We present a prototype for Wilsonian analysis of asymptotics of supersymmetric partition functions of non-abelian gauge theories. Localization allows expressing such partition functions as an integral over a BPS moduli space. When the limit of interest introduces a scale hierarchy in the problem, asymptotics of the partition function is obtained in the Wilsonian approach by i) decomposing (in some suitable scheme) the BPS moduli space into various patches according to the set of light fields (lighter than the scheme dependent cut-off Λ) they support, ii) localizing the partition function of the effective field theory on each patch (with cut-offs set by the scheme), and iii) summing up the contributions of all patches to obtain the final asymptotic result (which is scheme-independent and accurate as Λ → ∞). Our prototype concerns the Cardy-like asymptotics of the 4d superconformal index, which has been of interest recently for its application to black hole microstate counting in AdS5/CFT4. As a byproduct of our analysis we obtain the most general asymptotic expression for the index of gauge theories in the Cardy-like limit, encompassing and extending all previous results.


2013 ◽  
Vol 28 (28) ◽  
pp. 1330044 ◽  
Author(s):  
DOMENICO ORLANDO ◽  
SUSANNE REFFERT

The fluxtrap background of string theory provides a transparent and algorithmic way of constructing supersymmetric gauge theories with both mass and Ω-type deformations in various dimensions. In this paper, we review a number of deformed supersymmetric gauge theories in two and four dimensions which can be obtained via the fluxtrap background from string or M-theory. Such theories, the most well-known being Ω-deformed super-Yang–Mills theory in four dimensions, have met with a lot of interest in the recent literature. The string theory treatment offers many new avenues of analysis and applications, such as for example the study of the gravity duals for deformed [Formula: see text] gauge theories.


Sign in / Sign up

Export Citation Format

Share Document