scholarly journals Modular invariance in superstring theory from $$ \mathcal{N} $$ = 4 super-Yang-Mills

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large-N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2, ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N2− 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R4 and D4R4 contact inter-actions, which, for the R4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2, ℤ) invariant.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2∗ theory with respect to the squashing parameter b and mass parameter m, evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1/N expansion, these fourth derivatives are modular invariant functions of (τ,$$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1/N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1/N, they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS5× S5.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
António Antunes ◽  
Miguel S. Costa ◽  
João Penedones ◽  
Aaditya Salgarkar ◽  
Balt C. van Rees

Abstract The boundary correlation functions for a Quantum Field Theory (QFT) in an Anti-de Sitter (AdS) background can stay conformally covariant even if the bulk theory undergoes a renormalization group (RG) flow. Studying such correlation functions with the numerical conformal bootstrap leads to non-perturbative constraints that must hold along the entire flow. In this paper we carry out this analysis for the sine-Gordon RG flows in AdS2, which start with a free (compact) scalar in the UV and end with well-known massive integrable theories that saturate many S-matrix bootstrap bounds. We numerically analyze the correlation functions of both breathers and kinks and provide a detailed comparison with perturbation theory near the UV fixed point. Our bounds are often saturated to one or two orders in perturbation theory, as well as in the flat-space limit, but not necessarily in between.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nathan Haouzi ◽  
Jihwan Oh

Abstract We propose a double quantization of four-dimensional $$ \mathcal{N} $$ N = 2 Seiberg-Witten geometry, for all classical gauge groups and a wide variety of matter content. This can be understood as a set of certain non-perturbative Schwinger-Dyson identities, following the program initiated by Nekrasov [1]. The construction relies on the computation of the instanton partition function of the gauge theory on the so-called Ω-background on ℝ4, in the presence of half-BPS codimension 4 defects. The two quantization parameters are identified as the two parameters of this background. The Seiberg-Witten curve of each theory is recovered in the flat space limit. Whenever possible, we motivate our construction from type IIA string theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
David Meltzer ◽  
Allic Sivaramakrishnan

Abstract We derive the Cutkosky rules for conformal field theories (CFTs) at weak and strong coupling. These rules give a simple, diagrammatic method to compute the double-commutator that appears in the Lorentzian inversion formula. We first revisit weakly-coupled CFTs in flat space, where the cuts are performed on Feynman diagrams. We then generalize these rules to strongly-coupled holographic CFTs, where the cuts are performed on the Witten diagrams of the dual theory. In both cases, Cutkosky rules factorize loop diagrams into on-shell sub-diagrams and generalize the standard S-matrix cutting rules. These rules are naturally formulated and derived in Lorentzian momentum space, where the double-commutator is manifestly related to the CFT optical theorem. Finally, we study the AdS cutting rules in explicit examples at tree level and one loop. In these examples, we confirm that the rules are consistent with the OPE limit and that we recover the S-matrix optical theorem in the flat space limit. The AdS cutting rules and the CFT dispersion formula together form a holographic unitarity method to reconstruct Witten diagrams from their cuts.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
F. Aprile ◽  
J. M. Drummond ◽  
P. Heslop ◽  
H. Paul ◽  
F. Sanfilippo ◽  
...  

Abstract We consider a set of half-BPS operators in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory which are appropriate for describing single-particle states of superstring theory on AdS5× S5. These single-particle operators are defined to have vanishing two-point functions with all multi-trace operators and therefore correspond to admixtures of single- and multi-traces. We find explicit formulae for all single-particle operators and for their two-point function normalisation. We show that single-particle U(N) operators belong to the SU(N) subspace, thus for length greater than one they are simply the SU(N) single-particle operators. Then, we point out that at large N, as the length of the operator increases, the single-particle operator naturally interpolates between the single-trace and the S3 giant graviton. At finite N, the multi-particle basis, obtained by taking products of the single-particle operators, gives a new basis for all half-BPS states, and this new basis naturally cuts off when the length of any of the single-particle operators exceeds the number of colours. From the two-point function orthogonality we prove a multipoint orthogonality theorem which implies vanishing of all near-extremal correlators. We then compute all maximally and next-to-maximally extremal free correlators, and we discuss features of the correlators when the extremality is lowered. Finally, we describe a half-BPS projection of the operator product expansion on the multi-particle basis which provides an alternative construction of four- and higher-point functions in the free theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shota Komatsu ◽  
Miguel F. Paulos ◽  
Balt C. van Rees ◽  
Xiang Zhao

Abstract Quantum field theories in AdS generate conformal correlation functions on the boundary, and in the limit where AdS is nearly flat one should be able to extract an S-matrix from such correlators. We discuss a particularly simple position-space procedure to do so. It features a direct map from boundary positions to (on-shell) momenta and thereby relates cross ratios to Mandelstam invariants. This recipe succeeds in several examples, includes the momentum-conserving delta functions, and can be shown to imply the two proposals in [1] based on Mellin space and on the OPE data. Interestingly the procedure does not always work: the Landau singularities of a Feynman diagram are shown to be part of larger regions, to be called ‘bad regions’, where the flat-space limit of the Witten diagram diverges. To capture these divergences we introduce the notion of Landau diagrams in AdS. As in flat space, these describe on-shell particles propagating over large distances in a complexified space, with a form of momentum conservation holding at each bulk vertex. As an application we recover the anomalous threshold of the four-point triangle diagram at the boundary of a bad region.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2332-2342 ◽  
Author(s):  
TOSHIO NAKATSU ◽  
YUI NOMA ◽  
KANEHISA TAKASAKI

We study loop operators of 5d[Formula: see text] SYM in Ω background. Computation of their correlation functions is described. For the case of U(1) theory, the generating function reproduces the partition function of melting crystal model with external potential. We argue the common integrable structure of 5d[Formula: see text] SYM in Ω background and melting crystal model. An extension of the Seiberg-Witten geometry of the U(1) theory is presented.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luis F. Alday

Abstract We study non-planar correlators in $$ \mathcal{N} $$ N = 4 super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order 1/N4 and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplitude of type IIB string theory on AdS5× S5 in a low energy expansion. Both the loop supergravity result as well as the tower of stringy corrections have a remarkable simple structure in Mellin space, making manifest important properties such as the correct flat space limit and the structure of UV divergences.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Connor Armstrong ◽  
Arthur E. Lipstein ◽  
Jiajie Mei

Abstract In flat space, the color/kinematics duality states that perturbative Yang-Mills amplitudes can be written in such a way that kinematic numerators obey the same Jacobi relations as their color factors. This remarkable duality implies BCJ relations for Yang-Mills amplitudes and underlies the double copy to gravitational amplitudes. In this paper, we find analogous relations for Yang-Mills amplitudes in AdS4. In particular we show that the kinematic numerators of 4-point Yang-Mills amplitudes computed via Witten diagrams in momentum space enjoy a generalised gauge symmetry which can be used to enforce the kinematic Jacobi relation away from the flat space limit, and we derive deformed BCJ relations which reduce to the standard ones in the flat space limit. We illustrate these results using compact new expressions for 4-point Yang-Mills amplitudes in AdS4 and their kinematic numerators in terms of spinors. We also spell out the relation to 3d conformal correlators in momentum space, and speculate on the double copy to graviton amplitudes in AdS4.


Sign in / Sign up

Export Citation Format

Share Document