scholarly journals Structures of the massive vector boson propagators at finite temperature illuminated by the Goldstone equivalence gauge

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yi-Lei Tang

Abstract Inspired by the Goldstone equivalence gauge, we study the thermal corrections to an originally massive vector boson by checking the poles and branch cuts. We find that part of the Goldstone boson is spewed out from the longitudinal polarization, becoming a branch cut which can be approximated by the “quasi-poles” in the thermal environment. In this case, physical Goldstone boson somehow partly recovers. We also show the Feynmann rules for the “external legs” of these vector boson as well as the recovered Goldstone boson, expecting to simplify the vector boson participated process calculations by adopting the similar “tree-level” logic as in the zero temperature situation. Gauge boson mixing case are also discussed. Similar results are shown in other gauges, especially in the Rξ gauge.

1998 ◽  
Vol 13 (38) ◽  
pp. 3045-3061
Author(s):  
TOMÁS BAHNÍK ◽  
JIŘÍ HOŘEJSÍ

Possible deviations from a low-energy theorem for the scattering of strongly interacting longitudinally polarized W and Z bosons are discussed within a particular scheme of electroweak symmetry breaking. The scheme (suggested earlier by other authors in a slightly different context) is based on spontaneous breakdown of an SU(4) symmetry to custodial SU(2) subgroup. The physical spectrum of such a model contains a set of relatively light pseudo-Goldstone bosons whose interactions with vector bosons modify the low-energy theorem proven for a "minimal" symmetry-breaking sector The Goldstone-boson manifold SU(4)/SU(2) is not a symmetric space. In this context it is observed that, on the other hand, there is a large class of models of electroweak symmetry breaking, involving groups G and H such that the G/H is a symmetric space and the corresponding rich multiplets of pseudo-Goldstone bosons do not influence the canonical low-energy theorem. For the scheme considered here, the relevant interactions are described in terms of an effective chiral Lagrangian and tree-level contributions of the pseudo-Goldstone boson exchanges to the vector boson scattering are computed explicitly. A comparison with the standard model is made.


2014 ◽  
Vol 29 (24) ◽  
pp. 1430049 ◽  
Author(s):  
Chanyong Park

We review interesting results achieved in recent studies on the holographic Lifshitz field theory. The holographic Lifshitz field theory at finite temperature is described by a Lifshitz black brane geometry. The holographic renormalization together with the regularity of the background metric allows to reproduce thermodynamic quantities of the dual Lifshitz field theory where the Bekenstein–Hawking entropy appears as the renormalized thermal entropy. All results satisfy the desired black brane thermodynamics. In addition, hydrodynamic properties are further reviewed in which the holographic retarded Green functions of the current and momentum operators are studied. In a nonrelativistic Lifshitz field theory, intriguingly, there exists a massive quasinormal mode at finite temperature whose effective mass is linearly proportional to temperature. Even at zero temperature and in the nonzero momentum limit, a quasinormal mode still remains unlike the dual relativistic field theory. Finally, we account for how adding impurity modifies the electric property of the nonrelativistic Lifshitz theory.


1999 ◽  
Vol 13 (28) ◽  
pp. 3357-3367 ◽  
Author(s):  
A. REBEI ◽  
W. N. G. HITCHON

At finite temperature, a Fermi gas can have states that simultaneously hold a particle and a hole with a finite probability. This gives rise to a new set of diagrams that are absent at zero temperature. The so called "anomalous" diagram is just one of the new diagrams. We have already studied the contribution of these new diagrams to the thermodynamic potential (Phys. Lett.A224, 127 (1996)). Here we continue that work and calculate their effect on the specific heat. We will also calculate the finite temperature contribution of the ring diagrams. We conclude that the ln T behavior of the specific heat due to exchange gets canceled by the new contribution of the new diagrams, and that screening is not essential to resolve this anomaly.


2018 ◽  
Vol 175 ◽  
pp. 07045
Author(s):  
Bastian B. Brandt ◽  
Anthony Francis ◽  
Harvey B. Meyer ◽  
Daniel Robaina ◽  
Kai Zapp

We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size 20 × 643 at T ≈ 151MeV and a lighter zero-temperature pion mass mπ ≈ 185 MeV. Furthermore, we investigate the Gell-Mann–Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.


Author(s):  
Eugene Kogan

In our publication from 8 years ago1 we calculated RKKY interaction between two magnetic impurities in graphene. The consideration was based on the perturbation theory for the thermodynamic potential in the imaginary time representation and direct evaluation of real space spin susceptibility. Only the case of zero temperature was considered. We show in this short notice that the approach can be easily generalized to the case of finite temperature.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Maximilian Ruhdorfer ◽  
Ennio Salvioni ◽  
Andreas Weiler

We study for the first time the collider reach on the derivative Higgs portal, the leading effective interaction that couples a pseudo Nambu-Goldstone boson (pNGB) scalar Dark Matter to the Standard Model. We focus on Dark Matter pair production through an off-shell Higgs boson, which is analyzed in the vector boson fusion channel. A variety of future high-energy lepton colliders as well as hadron colliders are considered, including CLIC, a muon collider, the High-Luminosity and High-Energy versions of the LHC, and FCC-hh. Implications on the parameter space of pNGB Dark Matter are discussed. In addition, we give improved and extended results for the collider reach on the marginal Higgs portal, under the assumption that the new scalars escape the detector, as motivated by a variety of beyond the Standard Model scenarios.


2000 ◽  
Vol 15 (11n12) ◽  
pp. 731-735
Author(s):  
E. C. MARINO ◽  
D. G. G. SASAKI

We study the effect of a finite temperature on the correlation function of quantum magnetic vortex lines in the framework of the (3 + 1)-dimensional Abelian Higgs model. The vortex energy is inferred from the large distance behavior of these correlation functions. For large straight vortices of length L, we obtain that the energy is proportional to TL2 differently from the zero temperature result which is proportional to L. The case of closed strings is also analyzed. For T = 0, we evaluate the correlation function and energy of a large ring. Finite closed vortices do not exist as genuine excitations for any temperature.


2021 ◽  
pp. 287-303
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The phenomenon of spontaneous symmetry breaking is a common feature of phase transitions in both classical and quantum physics. In a first part we study this phenomenon for the case of a global internal symmetry and give a simple proof of Goldstone’s theorem. We show that a massless excitation appears, corresponding to every generator of a spontaneously broken symmetry. In a second part we extend these ideas to the case of gauge symmetries and derive the Brout–Englert–Higgs mechanism. We show that the gauge boson associated with the spontaneously broken generator acquires a mass and the corresponding field, which would have been the Goldstone boson, decouples and disappears. Its degree of freedom is used to allow the transition from a massless to a massive vector field.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Seraina Glaus ◽  
Margarete Mühlleitner ◽  
Jonas Müller ◽  
Shruti Patel ◽  
Tizian Römer ◽  
...  

Abstract Having so far only indirect evidence for the existence of Dark Matter a plethora of experiments aims at direct detection of Dark Matter through the scattering of Dark Matter particles off atomic nuclei. For the correct interpretation and identification of the underlying nature of the Dark Matter constituents higher-order corrections to the cross section of Dark Matter-nucleon scattering are important, in particular in models where the tree-level cross section is negligibly small. In this work we revisit the electroweak corrections to the dark matter-nucleon scattering cross section in a model with a pseudo Nambu-Goldstone boson as the Dark Matter candidate. Two calculations that already exist in the literature, apply different approaches resulting in different final results for the cross section in some regions of the parameter space leading us to redo the calculation and analyse the two approaches to clarify the situation. We furthermore update the experimental constraints and examine the regions of the parameter space where the cross section is above the neutrino floor but which can only be probed in the far future.


Sign in / Sign up

Export Citation Format

Share Document