scholarly journals Exact symmetries and threshold states in two-dimensional models for QCD

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ross Dempsey ◽  
Igor R. Klebanov ◽  
Silviu S. Pufu

Abstract Two-dimensional SU(N) gauge theory coupled to a Majorana fermion in the adjoint representation is a nice toy model for higher-dimensional gauge dynamics. It possesses a multitude of “gluinoball” bound states whose spectrum has been studied using numerical diagonalizations of the light-cone Hamiltonian. We extend this model by coupling it to Nf flavors of fundamental Dirac fermions (quarks). The extended model also contains meson-like bound states, both bosonic and fermionic, which in the large-N limit decouple from the gluinoballs. We study the large-N meson spectrum using the Discretized Light-Cone Quantization (DLCQ). When all the fermions are massless, we exhibit an exact $$ \mathfrak{osp} $$ osp (1|4) symmetry algebra that leads to an infinite number of degeneracies in the DLCQ approach. More generally, we show that many single-trace states in the theory are threshold bound states that are degenerate with multi-trace states. These exact degeneracies can be explained using the Kac-Moody algebra of the SU(N) current. We also present strong numerical evidence that additional threshold states appear in the continuum limit. Finally, we make the quarks massive while keeping the adjoint fermion massless. In this case too, we observe some exact degeneracies that show that the spectrum of mesons becomes continuous above a certain threshold. This demonstrates quantitatively that the fundamental string tension vanishes in the massless adjoint QCD2 without explicit four-fermion operators.

1991 ◽  
Vol 06 (13) ◽  
pp. 2331-2346 ◽  
Author(s):  
KAI-WEN XU ◽  
CHUAN-JIE ZHU

We study the symmetry of two-dimensional gravity by choosing a generic gauge. A local action is derived which reduces to either the Liouville action or the Polyakov one by reducing to the conformal or light-cone gauge respectively. The theory is also solved classically. We show that an SL (2, R) covariant gauge can be chosen so that the two-dimensional gravity has a manifest Virasoro and the sl (2, R)-current symmetry discovered by Polyakov. The symmetry algebra of the light-cone gauge is shown to be isomorphic to the Beltrami algebra. By using the contour integration method we construct the BRST charge QB corresponding to this algebra following the Fradkin-Vilkovisky procedure and prove that the nilpotence of QB requires c=28 and α0=1. We give a simple interpretation of these conditions.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


1992 ◽  
Vol 07 (35) ◽  
pp. 3291-3302 ◽  
Author(s):  
KIYONORI YAMADA

We show that the two-dimensional gravity coupled to c=−2 matter field in Polyakov’s light-cone gauge has a twisted N=2 superconformal algebra. We also show that the BRST cohomology in the light-cone gauge actually coincides with that in the conformal gauge. Based on this observation the relations between the topological algebras are discussed.


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


2005 ◽  
Vol 72 (3) ◽  
pp. 430-436 ◽  
Author(s):  
E Dupont-Ferrier ◽  
P Mallet ◽  
L Magaud ◽  
J. Y Veuillen
Keyword(s):  

2016 ◽  
Vol 128 (35) ◽  
pp. 10448-10451 ◽  
Author(s):  
Yalong Jiao ◽  
Fengxian Ma ◽  
John Bell ◽  
Ante Bilic ◽  
Aijun Du

Sign in / Sign up

Export Citation Format

Share Document