scholarly journals The universe from a single particle. Part II

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Michael Freedman ◽  
Modjtaba Shokrian Zini

Abstract We continue to explore, in the context of a toy model, the hypothesis that the interacting universe we see around us could result from single particle (undergraduate) quantum mechanics via a novel spontaneous symmetry breaking (SSB) acting at the level of probability distributions on Hamiltonians (rather than on states as is familiar from both Ginzburg-Landau superconductivity and the Higgs mechanism). In an earlier paper [1] we saw qubit structure emerge spontaneously on ℂ4 and ℂ8, and in this work we see ℂ6 spontaneously decomposing as ℂ2 ⊗ ℂ3 and very curiously ℂ5 (and ℂ7) splitting off one (one or three) directions and then factoring. This evidence provides additional support for the broad hypothesis: Nature will seek out tensor decompositions where none are present. We consider how this finding may form a basis for the origins of interaction and ask if it can be related to established foundational discussions such as string theory.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1358
Author(s):  
Yiannis Contoyiannis ◽  
Michael P. Hanias ◽  
Pericles Papadopoulos ◽  
Stavros G. Stavrinides ◽  
Myron Kampitakis ◽  
...  

This paper presents our study of the presence of the unstable critical point in spontaneous symmetry breaking (SSB) in the framework of Ginzburg–Landau (G-L) free energy. Through a 3D Ising spin lattice simulation, we found a zone of hysteresis where the unstable critical point continued to exist, despite the system having entered the broken symmetry phase. Within the hysteresis zone, the presence of the kink–antikink SSB solitons expands and, therefore, these can be observed. In scalar field theories, such as Higgs fields, the mass of this soliton inside the hysteresis zone could behave as a tachyon mass, namely as an imaginary quantity. Due to the fact that groups Ζ(2) and SU(2) belong to the same universality class, one expects that, in future experiments of ultra-relativistic nuclear collisions, in addition to the expected bosons condensations, structures of tachyon fields could appear.


2007 ◽  
Vol 75 (7) ◽  
pp. 635-638 ◽  
Author(s):  
Jasper van Wezel ◽  
Jeroen van den Brink

1998 ◽  
Vol 13 (19) ◽  
pp. 1539-1546
Author(s):  
F. BUCCELLA ◽  
O. PISANTI ◽  
L. ROSA

The possibility of generating the observed baryon asymmetry of the universe in an SO(10) gauge model with spontaneous symmetry breaking pattern [Formula: see text] is studied. We find it possible to generate a [Formula: see text], converting the leptonic number produced at the B- L breaking scale via the B+L violating processes mediated by sphalerons at the electroweak scale. The resulting picture is tested against the limit coming from experimental data: proton lifetime and neutrino oscillations.


2005 ◽  
Vol 20 (15) ◽  
pp. 3481-3487 ◽  
Author(s):  
VLADIMIR DZHUNUSHALIEV ◽  
DOUGLAS SINGLETON ◽  
DANNY DHOKARH

In the present work we show that it is possible to arrive at a Ginzburg-Landau (GL) like equation from pure SU (2) gauge theory. This has a connection to the dual superconducting model for color confinement where color flux tubes permanently bind quarks into color neutral states. The GL Lagrangian with a spontaneous symmetry breaking potential, has such (Nielsen-Olesen) flux tube solutions. The spontaneous symmetry breaking requires a tachyonic mass for the effective scalar field. Such a tachyonic mass term is obtained from the condensation of ghost fields.


2018 ◽  
Vol 96 (5) ◽  
pp. 529-554 ◽  
Author(s):  
M.W. Kalinowski

The paper is devoted to the unification of fermions within nonsymmetric Kaluza–Klein theories. We obtain a Lagrangian for fermions in non-Abelian Kaluza–Klein theory and non-Abelian Kaluza–Klein theory with spontaneous symmetry breaking and Higgs’ mechanism. A Lagrangian for fermions for geometrized bosonic part of GSW (Glashow–Salam–Weinberg) model in our approach has been derived. Yukawa-type terms and mass terms coming from higher dimensions have been obtained. In the paper, 1/2-spin fields and 3/2-spin fields are considered.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2076
Author(s):  
Priidik Gallagher ◽  
Tomi Koivisto

Notoriously, the two main problems of the standard ΛCDM model of cosmology are the cosmological constant Λ and the cold dark matter, CDM. This essay shows that both the Λ and the CDM arise as integration constants in a careful derivation of Einstein’s equations from first principles in a Lorentz gauge theory. The dark sector of the universe might only reflect the geometry of a spontaneous symmetry breaking that is necessary for the existence of spacetime and an observer therein.


Sign in / Sign up

Export Citation Format

Share Document