scholarly journals De sitter magnetic black hole dipole with a supersymmetric horizon

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Davide Astesiano ◽  
S.L. Cacciatori

Abstract We find a new non BPS solution in N = 2 D = 4 gauged supergravity coupled to U(1) gauge fields and matter. It consists in a closed universe with two extremal black holes of equal size, surrounding two singularities. They have opposite magnetic charges (and no electric charges), but stay in static equilibrium thanks to the positive pressure of a cosmological constant. The geometry is perfectly symmetric under the exchange of the black holes and the flip of the sign of the charges. However the scalar field is non constant and non symmetric, with different values at the horizons, which depend on a real modulus. Remarkably we show that it satisfies the attractor mechanism and the entropy indeed depends only on the magnetic charges. At one of the horizons the solution becomes $$ \frac{1}{2} $$ 1 2 -BPS supersymmetric, while at the other one there is no supersymmetry, but the entropy remains independent from the scalar modulus.

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050048
Author(s):  
Xin-Yang Wang ◽  
Yi-Ru Wang ◽  
Wen-Biao Liu

Based on the definition of the interior volume of spherically symmetry black holes, the interior volume of Schwarzschild–(Anti) de Sitter black holes is calculated. It is shown that with the cosmological constant ([Formula: see text]) increasing, the changing behaviors of both the position of the largest hypersurface and the interior volume for the Schwarzschild–Anti de Sitter black hole are the same as the Schwarzschild–de Sitter black hole. Considering a scalar field in the interior volume and Hawking radiation with only energy, the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy is constructed. The results show that the scalar field entropy is approximately proportional to Bekenstein–Hawking entropy during Hawking radiation. Meanwhile, the proportionality coefficient is also regarded as a constant approximately with the increasing [Formula: see text]. Furthermore, considering [Formula: see text] as a dynamical variable, the modified Stefan–Boltzmann law is proposed which can be used to describe the variation of both the mass and [Formula: see text] under Hawking radiation. Using this modified law, the evolution relation between the two types of entropy is also constructed. The results show that the coefficient for Schwarzschild–de Sitter black holes is closer to a constant than the one for Schwarzschild–Anti de Sitter black holes during the evaporation process. Moreover, we find that for Hawking radiation carrying only energy, the evolution relation is a special case compared with the situation that the mass and [Formula: see text] are both considered as dynamical variables.


Author(s):  
Sascha Kulas

In cosmology dark energy and dark matter are included in the CDM model, but they are still completely unknown. On the other hand the trans-Planckian problem leads to unlikely high photon energies for black holes. We introduce a model with quantized black hole matter. This minimizes the trans- Planckian problem extremely and leads to a scalar field in the oscillating universe model. We show that the scalar field has the same characteristics as a vacuum energy field and leads to the same Casimir effect. Shortly after the beginning of the big bounce this field decays locally and leads to the production of dark matter. In this model no inflation theory is needed. We emphasize that this model is mainly a phenomenological approach with the aim of new impetus to the discussion.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


Author(s):  
A. Belhaj ◽  
M. Benali ◽  
A. El Balali ◽  
W. El Hadri ◽  
H. El Moumni

Motivated by recent astrophysical observations, we investigate the shadow behaviors of four-dimensional charged rotating black holes with a cosmological constant. This study is made in terms of a reduced moduli space parameterized by the charge and the rotation parameters. For fixed observers, we analyse in some details the shadow behaviors and the corresponding naked singularities of Kerr–Newman and Kerr–Sen four-dimensional black holes in Anti-de Sitter backgrounds. Then, a comparative discussion is provided by computing the geometrical observables and the energy emission rate.


2002 ◽  
Vol 17 (20) ◽  
pp. 2767-2767
Author(s):  
JOSÉ P. S. LEMOS ◽  
VITOR CARDOSO

In the context of the AdS/CFT conjecture1, a Schwarzschild-anti-de Sitter (SAdS) black hole may be looked at as a thermal state in the CFT. Perturbing the black hole corresponds in the CFT to perturb the thermal state. We considered an important specific perturbation - the radial infall of a small test particle coupled to a scalar field into a SAdS black hole. We computed the spectra, waveforms and total scalar energy radiated during this process. For small black holes, the spectra is dominated by a resonance, and the waveform by quasinormal ringing2,3,4. For large black holes we find that the waveform quickly settles down to its final zero value, always in a quasinormal way. The approach to thermal equilibrium in the CFT is therefore dictated by the lowest quasinormal frequency. We also commented on the interpretation of the bulk process when viewed from the brane: to the black hole corresponds a thermal bath, to the infalling probe corresponds an expanding bubble, and to the scalar field waves correspond particles decaying into bosons of the associate operator of the gauge theory. For more details see5,6.


2001 ◽  
Vol 16 (15) ◽  
pp. 2605-2663
Author(s):  
BELAL E. BAAQUIE ◽  
L. C. KWEK

There has been spectacular progress in the development of string and superstring theories since its inception thirty years ago. Development in this area has never been impeded by the lack of experimental confirmation. Indeed, numerous bold and imaginative strides have been taken and the sheer elegance and logical consistency of the arguments have served as a primary motivation for string theorists to push their formulations ahead. In fact the development in this area has been so rapid that new ideas quickly become obsolete. On the other hand, this rapid development has proved to be the greatest hindrance for novices interested in this area. These notes serve as a gentle introduction to this topic. In these elementary notes, we briefly review the RNS formulation of superstring theory, GSO projection, D-branes, bosonic strings, dualities, dynamics of D-branes and the microscopic description of Bekenstein entropy of a black hole.


Author(s):  
Almendra Aragón ◽  
Ramón Bécar ◽  
P. A. González ◽  
Yerko Vásquez

Abstract We study the propagation of probe scalar fields in the background of 4D Einstein–Gauss–Bonnet black holes with anti-de Sitter (AdS) asymptotics and calculate the quasinormal modes. Mainly, we show that the quasinormal spectrum consists of two different branches, a branch perturbative in the Gauss–Bonnet coupling constant $$\alpha $$α and another branch, nonperturbative in $$\alpha $$α. The perturbative branch consists of complex quasinormal frequencies that approximate the quasinormal frequencies of the Schwarzschild AdS black hole in the limit of a null coupling constant. On the other hand, the nonperturbative branch consists of purely imaginary frequencies and is characterized by the growth of the imaginary part when $$\alpha $$α decreases, diverging in the limit of null coupling constant; therefore they do not exist for the Schwarzschild AdS black hole. Also, we find that the imaginary part of the quasinormal frequencies is always negative for both branches; therefore, the propagation of scalar fields is stable in this background.


2010 ◽  
Vol 25 (08) ◽  
pp. 1571-1596 ◽  
Author(s):  
EDUARDO GUENDELMAN ◽  
ALEXANDER KAGANOVICH ◽  
EMIL NISSIMOV ◽  
SVETLANA PACHEVA

We consider self-consistent coupling of bulk Einstein–Maxwell–Kalb–Ramond system to codimension-one charged lightlikep-brane with dynamical (variable) tension (LL-brane). The latter is described by a manifestly reparametrization-invariant worldvolume action significantly different from the ordinary Nambu–Goto one. We show that the LL-brane is the appropriate gravitational and charge source in the Einstein–Maxwell–Kalb–Ramond equations of motion needed to generate a self-consistent solution describing nonsingular black hole. The latter consists of de Sitter interior region and exterior Reissner–Nordström region glued together along their common horizon (it is the inner horizon from the Reissner–Nordström side). The matching horizon is automatically occupied by the LL-brane as a result of its worldvolume Lagrangian dynamics, which dynamically generates the cosmological constant in the interior region and uniquely determines the mass and charge parameters of the exterior region. Using similar techniques we construct a self-consistent wormhole solution of Einstein–Maxwell system coupled to electrically neutral LL-brane, which describes two identical copies of a nonsingular black hole region being the exterior Reissner–Nordström region above the inner horizon, glued together along their common horizon (the inner Reissner–Nordström one) occupied by the LL-brane. The corresponding mass and charge parameters of the two black hole "universes" are explicitly determined by the dynamical LL-brane tension. This also provides an explicit example of Misner–Wheeler "charge without charge" phenomenon. Finally, this wormhole solution connecting two nonsingular black holes can be transformed into a special case of Kantowski–Sachs bouncing cosmology solution if instead of Reissner–Nordström we glue together two copies of the exterior Reissner–Nordström–de Sitter region with big enough bare cosmological constant, such that the radial coordinate becomes a timelike variable everywhere in the two "universes," except at the matching hypersurface occupied by the LL-brane.


Sign in / Sign up

Export Citation Format

Share Document