scholarly journals NONSINGULAR BLACK HOLES FROM GRAVITY–MATTER-BRANE LAGRANGIANS

2010 ◽  
Vol 25 (08) ◽  
pp. 1571-1596 ◽  
Author(s):  
EDUARDO GUENDELMAN ◽  
ALEXANDER KAGANOVICH ◽  
EMIL NISSIMOV ◽  
SVETLANA PACHEVA

We consider self-consistent coupling of bulk Einstein–Maxwell–Kalb–Ramond system to codimension-one charged lightlikep-brane with dynamical (variable) tension (LL-brane). The latter is described by a manifestly reparametrization-invariant worldvolume action significantly different from the ordinary Nambu–Goto one. We show that the LL-brane is the appropriate gravitational and charge source in the Einstein–Maxwell–Kalb–Ramond equations of motion needed to generate a self-consistent solution describing nonsingular black hole. The latter consists of de Sitter interior region and exterior Reissner–Nordström region glued together along their common horizon (it is the inner horizon from the Reissner–Nordström side). The matching horizon is automatically occupied by the LL-brane as a result of its worldvolume Lagrangian dynamics, which dynamically generates the cosmological constant in the interior region and uniquely determines the mass and charge parameters of the exterior region. Using similar techniques we construct a self-consistent wormhole solution of Einstein–Maxwell system coupled to electrically neutral LL-brane, which describes two identical copies of a nonsingular black hole region being the exterior Reissner–Nordström region above the inner horizon, glued together along their common horizon (the inner Reissner–Nordström one) occupied by the LL-brane. The corresponding mass and charge parameters of the two black hole "universes" are explicitly determined by the dynamical LL-brane tension. This also provides an explicit example of Misner–Wheeler "charge without charge" phenomenon. Finally, this wormhole solution connecting two nonsingular black holes can be transformed into a special case of Kantowski–Sachs bouncing cosmology solution if instead of Reissner–Nordström we glue together two copies of the exterior Reissner–Nordström–de Sitter region with big enough bare cosmological constant, such that the radial coordinate becomes a timelike variable everywhere in the two "universes," except at the matching hypersurface occupied by the LL-brane.

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


2021 ◽  
pp. 2150048
Author(s):  
Yuan Chen ◽  
He-Xu Zhang ◽  
Tian-Chi Ma ◽  
Jian-Bo Deng

In this paper, we discussed optical properties of the nonlinear magnetic charged black hole surrounded by quintessence with a nonzero cosmological constant [Formula: see text]. Setting the state parameter [Formula: see text], we studied the horizons, the photon region and the shadow of this black hole. It turned out that for a fixed quintessential parameter [Formula: see text], in a certain range, with the increase of the rotation parameter [Formula: see text] and magnetic charge [Formula: see text], the inner horizon radius increases while the outer horizon radius decreases. The cosmological horizon [Formula: see text] decreases when [Formula: see text] or [Formula: see text] increases and it increases slightly when [Formula: see text] and [Formula: see text] increase. The shapes of photon region were then studied and depicted through graphical illustrations. Finally, we discussed the effects of the quintessential parameter [Formula: see text] and the cosmological constant [Formula: see text] on the shadow of this black hole with a fixed observer position in the domain of outer communication.


Author(s):  
A. Belhaj ◽  
M. Benali ◽  
A. El Balali ◽  
W. El Hadri ◽  
H. El Moumni

Motivated by recent astrophysical observations, we investigate the shadow behaviors of four-dimensional charged rotating black holes with a cosmological constant. This study is made in terms of a reduced moduli space parameterized by the charge and the rotation parameters. For fixed observers, we analyse in some details the shadow behaviors and the corresponding naked singularities of Kerr–Newman and Kerr–Sen four-dimensional black holes in Anti-de Sitter backgrounds. Then, a comparative discussion is provided by computing the geometrical observables and the energy emission rate.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Davide Astesiano ◽  
S.L. Cacciatori

Abstract We find a new non BPS solution in N = 2 D = 4 gauged supergravity coupled to U(1) gauge fields and matter. It consists in a closed universe with two extremal black holes of equal size, surrounding two singularities. They have opposite magnetic charges (and no electric charges), but stay in static equilibrium thanks to the positive pressure of a cosmological constant. The geometry is perfectly symmetric under the exchange of the black holes and the flip of the sign of the charges. However the scalar field is non constant and non symmetric, with different values at the horizons, which depend on a real modulus. Remarkably we show that it satisfies the attractor mechanism and the entropy indeed depends only on the magnetic charges. At one of the horizons the solution becomes $$ \frac{1}{2} $$ 1 2 -BPS supersymmetric, while at the other one there is no supersymmetry, but the entropy remains independent from the scalar modulus.


2008 ◽  
Vol 23 (15) ◽  
pp. 1115-1127
Author(s):  
V. S. MOROZOVA ◽  
S. G. GHOSH

We prove a theorem that characterizes a two-parameter family of solutions to Einstein equations with a negative cosmological constant, representing, in general, non-spherical radiating black holes in an anti-de Sitter background. It is shown that the best known non-spherical radiating black hole solutions are particular cases and static non-spherical black hole solutions, for Type I fluid, are also retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.


2010 ◽  
Vol 22 (04) ◽  
pp. 431-484 ◽  
Author(s):  
THIERRY DAUDÉ ◽  
FRANÇOIS NICOLEAU

In this paper, we study the inverse scattering of massive charged Dirac fields in the exterior region of (de Sitter)–Reissner–Nordström black holes. Firstly, we obtain a precise high-energy asymptotic expansion of the diagonal elements of the scattering matrix (i.e. of the transmission coefficients) and we show that the leading terms of this expansion allow to recover uniquely the mass, the charge and the cosmological constant of the black hole. Secondly, in the case of nonzero cosmological constant, we show that the knowledge of the reflection coefficients of the scattering matrix on any interval of energy also permits to recover uniquely these parameters.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 52
Author(s):  
Misba Afrin ◽  
Sushant G. Ghosh

The Event Horizon Telescope collaboration has revealed the first direct image of a black hole, as per the shadow of a Kerr black hole of general relativity. However, other Kerr-like rotating black holes of modified gravity theories cannot be ignored, and they are essential as they offer an arena in which these theories can be tested through astrophysical observation. This motivates us to investigate asymptotically de Sitter rotating black holes wherein interpreting the cosmological constant Λ as the vacuum energy leads to a deformation in the vicinity of a black hole—new Kerr–de Sitter solution, which has a richer geometric structure than the original one. We derive an analytical formula necessary for the shadow of the new Kerr–de Sitter black holes and then visualize the shadow of black holes for various parameters for an observer at given coordinates (r0,θ0) in the domain (r0,rc) and estimate the cosmological constant Λ from its shadow observables. The shadow observables of the new Kerr–de Sitter black holes significantly deviate from the corresponding observables of the Kerr–de Sitter black hole over an appreciable range of the parameter space. Interestingly, we find a finite parameter space for (Λ, a) where the observables of the two black holes are indistinguishable.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Peng-Zhang He ◽  
Qi-Qi Fan ◽  
Hao-Ran Zhang ◽  
Jian-Bo Deng

AbstractMotivated by recent work on rotating black hole shadow (Chang and Zhu in Phys Rev D 101:084029, 2020), we investigate the shadow behaviours of rotating Hayward–de Sitter black hole for static observers at a finite distance in terms of astronomical observables. This paper uses the newly introduced distortion parameter (Chang and Zhu in Phys Rev D 102:044012, 2020) to describe the shadow’s shape quantitatively. We show that the spin parameter would distort shadows and the magnetic monopole charge would increase the degree of deformation. The distortion will increase as the distance between the observer and the black hole increases, and distortion reduces as the cosmological constant increases. Besides, the increase of the spin parameter, magnetic monopole charge and cosmological constant will cause the shadows shrunken.


2006 ◽  
Vol 21 (27) ◽  
pp. 2043-2054 ◽  
Author(s):  
YVES BRIHAYE ◽  
TERENCE DELSATE

Numerical arguments are presented for the existence of regular and black hole solutions of the Einstein–Skyrme equations with a positive cosmological constant. These classical configurations approach asymptotically the de Sitter spacetime. The main properties of the solutions and the differences with respect to the asymptotically flat ones are discussed. In particular our results suggest that, for a positive cosmological constant, the mass evaluated as timelike infinity in infinite. Special emphasis is set to de Sitter black holes Skyrmions which display two horizons.


Sign in / Sign up

Export Citation Format

Share Document