Natural α,β-unsaturated lactones inhibit neuropeptide-induced mast cell activation in an in vitro model of neurogenic inflammation

2020 ◽  
Vol 69 (10) ◽  
pp. 1039-1051
Author(s):  
Roberto Carlos Coll ◽  
Patricia María Vargas ◽  
María Laura Mariani ◽  
Alicia Beatriz Penissi
2010 ◽  
Vol 125 (2) ◽  
pp. AB179
Author(s):  
A.M. Hofmann ◽  
C. Jin ◽  
H.F. Staats ◽  
S.N. Abraham
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5580
Author(s):  
Lorina I. Badger-Emeka ◽  
Promise Madu Emeka ◽  
Krishnaraj Thirugnanasambantham ◽  
Hairul Islam M. Ibrahim

Allergy is an immunological disorder that develops in response to exposure to an allergen, and histamines mediate these effects via histidine decarboxylase (HDC) activity at the intracellular level. In the present study, we developed a 3D model of Klebsiella pneumoniae histidine decarboxylase (HDC) and analyzed the HDC inhibitory potential of cinnamaldehyde (CA) and subsequent anti-allergic potential using a bacterial and mammalian mast cell model. A computational and in vitro study using K. pneumonia revealed that CA binds to HDC nearby the pyridoxal-5′-phosphate (PLP) binding site and inhibited histamine synthesis in a bacterial model. Further study using a mammalian mast cell model also showed that CA decreased the levels of histamine in the stimulated RBL-2H3 cell line and attenuated the release of β-hexoseaminidase and cell degranulation. In addition, CA treatment also significantly suppressed the levels of pro-inflammatory cytokines TNF-α and IL-6 and the nitric oxide (NO) level in the stimulated mast cells. A gene expression and Western blotting study revealed that CA significantly downregulated the expressions of MAPKp38/ERK and its downstream pro-allergic mediators that are involved in the signaling pathway in mast cell cytokine synthesis. This study further confirms that CA has the potential to attenuate mast cell activation by inhibiting HDC and modifying the process of allergic disorders.


1994 ◽  
Vol 257 (1-2) ◽  
pp. 87-93 ◽  
Author(s):  
Cleria M.M. Giraldelo ◽  
Aldete Zappellini ◽  
Marcelo N. Muscará ◽  
Iara M.S. De Luca ◽  
Stephen Hyslop ◽  
...  

1999 ◽  
Vol 106 (1) ◽  
pp. 208-215 ◽  
Author(s):  
Gardiner ◽  
Harrison ◽  
Chavda ◽  
Mackie ◽  
Machin

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 374-374
Author(s):  
Lucile Vincent ◽  
Julia Nguyen ◽  
Derek Vang ◽  
Oludare B Taiwo ◽  
Kathryn Luk ◽  
...  

Abstract Abstract 374 Sickle cell disease (SCD) is associated with inflammation, endothelial dysfunction and pain. We observed increased immunoreactivity (ir) of pro-inflammatory and vasoactive neuropeptides, substance P (SP) and calcitonin-gene related peptide (CGRP) accompanied by decreased mu opioid receptor (MOR)-ir in the skin of sickle as compared to control mice (Kohli et al., Blood 2010). SP activates mast cells (MC), which are tissue resident leukocytes, leading to the release of inflammatory cytokines, tryptase and neuropeptides. SP also stimulates vascular permeability resulting in plasma extravasation and neurogenic inflammation. We hypothesized that pain in SCD is associated with a persistent feed-forward cycle of mast cell degranulation and neurogenic inflammation characterized by increased release of SP and CGRP from activated nociceptors in the skin leading to neuroinflammation, plasma extravasation and pain. We examined this hypothesis using sickle (HbSS-BERK) and control (HbAA-BERK) mice expressing sickle and normal human hemoglobin, respectively; and MOR-knockout (MOR-KO) mice with their wild type 129S6 controls. We developed an ex-vivo system to analyze the release of inflammatory cytokines, mast cell degranulation markers (tryptase and beta-hexosaminidase) and neuropeptides in skin biopsies. Neurogenic inflammation was studied in vivo using the Miles' assay. Evans blue was injected into the tail vein and its extravasation in skin evoked by stimulation with SP and capsaicin was quantified. Skin biopsies from sickle mice exhibited constitutively enhanced release of several cytokines (IL6, MCP-1, TNFalpha, MIP-1alpha, GM-CSF, RANTES, etc), tryptase and the neuropeptides SP, and CGRP as compared to control mouse skin (p<0.05 for each). Increased RANTES and GM-CSF are suggestive of mast cell recruitment. Mast cell tryptase-ir was increased 2-fold while MOR-ir (but not delta- or kappa-OR-ir), was reduced by ∼50% in the skin of sickle as compared to control mice, suggestive of enhanced MC degranulation in sickle. In MC cultures prepared from sickle skin increased c-kit/CD117-, FCeR- and tryptase-ir were observed as compared to control mouse MCs. The plasma of sickle exhibited a ∼60–80% increase in MC degranulation markers, tryptase and beta-hexosaminidase, acute phase protein, serum amyloid protein, and neuropeptides, SP and CGRP, as compared to control mice (p<0.01 for each). These correlative molecular changes in the plasma and skin were accompanied by increased SP- and capsaicin-induced Evans blue dye leakage in the skin of sickle mice suggestive of neurogenic inflammation as compared to control (p<0.001 for each). MOR-KO mice also exhibited increased SP- and CGRP-ir in the skin and neurogenic inflammation, indicative of a contribution by MOR to the neuroinflamamtory process. In sickle mice treated with the mast cell stabilizer cromolyn sodium (CS), or the c-kit inhibitor, Imatinib, for 5 days, the inflammatory cytokine and neuropeptide release from the skin and the neurogenic inflammation were ameliorated as compared to vehicle (p<0.01). Additionally, morphine at a dose of 10 mg/Kg was ineffective in treating tonic cutaneous and thermal hyperalgesia, but effectively reduced hyperalgesia in CS and Imatinib treated sickle mice. Thus, MC degranulation contributes to neurogenic inflammation and pain in sickle mice. Imatinib treatment by itself reduced tonic hyperalgesia and significantly decreased GM-CSF release from the skin (p<0.05) correlative to the reduced white blood cell (WBC) count in sickle mice vs vehicle. In addition to inhibiting MC activity, Imatinib may be inhibiting protein tyrosine kinases involved in cytokine processing, vascular function and nociception. Together, our observations demonstrate that MCs contribute to a vicious cycle of pain and neurogenic inflammation mediated by increased neuropeptides in SCD. It is likely that mast cell inhibitors such as Imatinib may have a therapeutic effect on pain, inflammation and vascular dysfunction in SCD by reducing mast cell activation and neurogenic inflammation. Since, Imatinib decreased GM-CSF levels and WBC, it may even increase HbF levels, which are negatively regulated by GM-CSF in SCD. We therefore speculate that therapies targeting mast cells may potentiate therapeutic outcomes of analgesics, anti-inflammatory agents and Hydroxyurea® in SCD. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 194 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Massoud Daheshia ◽  
Daniel S. Friend ◽  
Michael J. Grusby ◽  
K. Frank Austen ◽  
Howard R. Katz

gp49B1 is an immunoglobulin (Ig) superfamily member that inhibits FcεRI-induced mast cell activation when the two receptors are coligated with antibodies in vitro. The critical question of in vivo function of gp49B1 is now addressed in gene-disrupted mice. gp49B1-deficient mice exhibited a significantly increased sensitivity to IgE-dependent passive cutaneous anaphylaxis as assessed by greater tissue swelling and mast cell degranulation in situ. Importantly, by the same criteria, the absence of gp49B1 also resulted in a lower threshold for antigen challenge in active cutaneous anaphylaxis, in which the antigen-specific antibody levels were comparable in gp49B1-deficient and sufficient mice. Moreover, the absence of gp49B1 resulted in a significantly greater and faster death rate in active systemic anaphylaxis. These results indicate that gp49B1 innately dampens adaptive immediate hypersensitivity responses by suppressing mast cell activation in vivo. In addition, this study provides a new concept and target for regulation of allergic disease susceptibility and severity.


1997 ◽  
Vol 185 (4) ◽  
pp. 663-672 ◽  
Author(s):  
Masao Yamaguchi ◽  
Chris S. Lantz ◽  
Hans C. Oettgen ◽  
Ildy M. Katona ◽  
Tony Fleming ◽  
...  

The binding of immunoglobulin E (IgE) to high affinity IgE receptors (FcεRI) expressed on the surface of mast cells primes these cells to secrete, upon subsequent exposure to specific antigen, a panel of proinflammatory mediators, which includes cytokines that can also have immunoregulatory activities. This IgE- and antigen-specific mast cell activation and mediator production is thought to be critical to the pathogenesis of allergic disorders, such as anaphylaxis and asthma, and also contributes to host defense against parasites. We now report that exposure to IgE results in a striking (up to 32-fold) upregulation of surface expression of FcεRI on mouse mast cells in vitro or in vivo. Moreover, baseline levels of FcεRI expression on peritoneal mast cells from genetically IgE-deficient (IgE −/−) mice are dramatically reduced (by ∼83%) compared with those on cells from the corresponding normal mice. In vitro studies indicate that the IgE-dependent upregulation of mouse mast cell FcεRI expression has two components: an early cycloheximide-insensitive phase, followed by a later and more sustained component that is highly sensitive to inhibition by cycloheximide. In turn, IgE-dependent upregulation of FcεRI expression significantly enhances the ability of mouse mast cells to release serotonin, interleukin-6 (IL-6), and IL-4 in response to challenge with IgE and specific antigen. The demonstration that IgE-dependent enhancement of mast cell FcεRI expression permits mast cells to respond to antigen challenge with increased production of proinflammatory and immunoregulatory mediators provides new insights into both the pathogenesis of allergic diseases and the regulation of protective host responses to parasites.


2017 ◽  
Vol 114 (8) ◽  
pp. E1490-E1499 ◽  
Author(s):  
Cristina Leoni ◽  
Sara Montagner ◽  
Andrea Rinaldi ◽  
Francesco Bertoni ◽  
Sara Polletti ◽  
...  

DNA methylation and specifically the DNA methyltransferase enzyme DNMT3A are involved in the pathogenesis of a variety of hematological diseases and in regulating the function of immune cells. Although altered DNA methylation patterns and mutations inDNMT3Acorrelate with mast cell proliferative disorders in humans, the role of DNA methylation in mast cell biology is not understood. By using mast cells lackingDnmt3a, we found that this enzyme is involved in restraining mast cell responses to acute and chronic stimuli, both in vitro and in vivo. The exacerbated mast cell responses observed in the absence ofDnmt3awere recapitulated or enhanced by treatment with the demethylating agent 5-aza-2′-deoxycytidine as well as by down-modulation ofDnmt1expression, further supporting the role of DNA methylation in regulating mast cell activation. Mechanistically, these effects were in part mediated by the dysregulated expression of the scaffold protein IQGAP2, which is characterized by the ability to regulate a wide variety of biological processes. Altogether, our data demonstrate that DNMT3A and DNA methylation are key modulators of mast cell responsiveness to acute and chronic stimulation.


1999 ◽  
Vol 67 (3) ◽  
pp. 1107-1115 ◽  
Author(s):  
Jeffrey Talkington ◽  
Steven P. Nickell

ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells.


Sign in / Sign up

Export Citation Format

Share Document