The effects of wood flour content and coupling agent on the dynamic mechanical and relaxation properties of wood-plastic composites

2015 ◽  
Vol 74 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Feng-Cheng Chang ◽  
John F. Kadla ◽  
Frank Lam
2013 ◽  
Vol 690-693 ◽  
pp. 1008-1012
Author(s):  
Hong Wei Lu ◽  
Meng Yao Li ◽  
Bin Zhang ◽  
Hua Yu ◽  
Xiao Niu Jiang

Good bonding at the interface between HDPE (High density polyethylene) and wood flour was achieved by adding MA (Maleic anhydride) as surface-reactive additive and WD-50 (3-aminopropyltriethoxysilane) as coupling agent products. HDPE-g-MA was prepared by melt grafting polymerization in the presence of DCP (Dicumyl peroxide) using a Hakke Rheocord. The FTIR spectra conformed that MA was successfully grafted onto HDPE and the effects of DCP and MA contents on grafting reaction were also studied. The effects of silane coupling agent (WD-50), wood flour and HDPE-g-MA contents on the mechanical properties of the HDPE-based wood-plastic composites were investigated by electronic tensile tester and impact test enginery. The results indicated that WD-50 (with the content of 2 wt%) and HDPE-g-MA (with the content of 10 wt%) effectively improved mechanical properties of the composite materials.


2019 ◽  
Vol 41 (2) ◽  
pp. 573-584 ◽  
Author(s):  
Yuanbin Ma ◽  
Hui He ◽  
Bai Huang ◽  
Huaishuai Jing ◽  
Zijin Zhao

2017 ◽  
Vol 63 (3) ◽  
pp. 131-136 ◽  
Author(s):  
Hirokazu Ito ◽  
Shinji Ogoe ◽  
Masaki Okamoto ◽  
Shigehiko Suzuki ◽  
Yoichi Kojima ◽  
...  

Holzforschung ◽  
2014 ◽  
Vol 68 (8) ◽  
pp. 933-940 ◽  
Author(s):  
Yao Chen ◽  
Nicole M. Stark ◽  
Mandla A. Tshabalala ◽  
Jianmin Gao ◽  
Yongming Fan

Abstract The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 24 full-factorial experimental design was employed to determine the effects of treatments and treatment combinations. WPCs were prepared with high-density polyethylene (HDPE) and treated WF was prepared by means of extrusion followed by injection molding, and the water absorption characteristics and mechanical properties of the products were evaluated. WPCs produced with extracted WF had lower water absorption rates and better mechanical properties than those made of untreated WF. WPCs containing delignified WF had higher water absorption rates and improved mechanical performance compared with those made of untreated WF.


2011 ◽  
Vol 393-395 ◽  
pp. 76-79 ◽  
Author(s):  
Hai Bing Huang ◽  
Hu Hu Du ◽  
Wei Hong Wang ◽  
Hai Gang Wang

In this article, wood-plastic composites(WPCs) were manufactured with wood flour(80~120mesh、40~80mesh、20~40mesh、10~20mesh) combing with high density polyethylene(HDPE). Effects of the size of wood flour on mechanical properies and density of composites were investigated. Results showed that particle size of wood flour had an important effect on properitiesof WPCs. Change of mesh number had a outstanding effect on flexural modulus, tensile modulus and impact strength, howere, little effect on flexural strength and tensile strength. When mesh number of wood flour changed from 80~120mesh to 10~20mesh,flexural modulus and tensile modulus were respectively enhanced by 42.4% and 28.4%, respectively, and impact strength was decreased by 35.5%.Size of wood flour basically had no effect on density of composite within 10~120mesh. The use of wood flour or fiber as fillers and reinforcements in thermoplastics has been gaining acceptance in commodity plastics applications in the past few years. WPCs are currently experiencing a dramatic increase in use. Most of them are used to produce window/door profiles,decking,railing,ang siding. Wood thermoplastic composites are manufactured by dispering wood fiber or wood flour(WF) into molten plastics to form composite materials by processing techniques such as extrusion,themoforming, and compression or injection molding[1]. WPCs have such advantages[2]:(1)With wood as filler can improve heat resistance and strength of plastic, and wood has a low cost, comparing with inorganic filler, wood has a low density. Wood as strengthen material has a great potential in improving tensile strength and flexural modulus[3];(2) For composite of same volume, composites with wood as filler have a little abrasion for equipment and can be regenerated;(3)They have a low water absorption and low hygroscopic property, They are not in need of protective waterproof paint, at the same time, composite can be dyed and painted for them own needs;(4)They are superior to wood in resistantnce to crack、leaf mold and termite aspects, composites are the same biodegradation as wood;(5)They can be processed or connected like wood;(6)They can be processed into a lots of complicated shape product by means of extrusion or molding and so on, meanwhile, they have high-efficiency raw material conversion and itself recycle utilization[4]. While there are many sucesses to report in WPCs, there are still some issues that need to be addressed before this technology will reach its full potential. This technology involves two different types of materials: one hygroscopic(biomass) and one hydrophobic(plastic), so there are issues of phase separation and compatibilization[5]. In this paper, Effects of the size of wood powder on mechanical properties of WPCs were studied.


2016 ◽  
Vol 715 ◽  
pp. 23-26
Author(s):  
Masahiro Nishida ◽  
Shun Furuya ◽  
Hirokazu Ito ◽  
Rie Makise ◽  
Masaki Okamoto

Wood-plastic composites (WPCs) which consist of wood flour and plastics have been widely used as architectural materials for a long time. However, the impact resistance is not always high and basic mechanical properties at high strain rate are not fully understood. In order to clarify the tensile behavior at high strain rates, split Hokinson pressure bar method was used for WPCs consisting of polypropylene. The effects of mixing ratio on the maximum stress and elongation at break were examined at high strain rates.


2021 ◽  
Vol 11 (1) ◽  
pp. 167-175
Author(s):  
Yonghui Zhou ◽  
David Hui ◽  
Yuxuan Wang ◽  
Mizi Fan

Abstract This article presents the assessment of bulk and in situ mechanical properties of rubber–wood–plastic composites (RubWPC) and their correlations, aiming to obtain a thorough understanding of mechanical behaviour of RubWPC, which is an essential prerequisite in realising their optimal design and applications. Dynamic mechanical analysis results showed that the composites treated with multiple coupling agents (combination of maleic anhydride polyethylene [MAPE] and bis(triethoxysilylpropyl)tetrasulfide and combination of MAPE and vinyltrimethoxysilane) exhibited greater storage modulus than both the untreated and single coupling agent treated composites owing to their superior interfacial bonding quality. The shift of relaxation peak and T g towards higher temperatures observed in the treated composites confirmed the enhancement of interfacial interaction and adhesion. Nanoindentation analysis suggested that the composite with optimised interface (MAPE and Si69 treated) possessed better nanomechanical property (elastic modulus) due to the resin penetration into cell lumens and vessels and the reaction between cell walls and coupling agents.


Sign in / Sign up

Export Citation Format

Share Document