Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments

2017 ◽  
Vol 130 (9) ◽  
pp. 1819-1835 ◽  
Author(s):  
Francis C. Ogbonnaya ◽  
Awais Rasheed ◽  
Emeka C. Okechukwu ◽  
Abdulqader Jighly ◽  
Farid Makdis ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148671 ◽  
Author(s):  
Liangliang Gao ◽  
M. Kathryn Turner ◽  
Shiaoman Chao ◽  
James Kolmer ◽  
James A. Anderson

Crop Science ◽  
2016 ◽  
Vol 56 (6) ◽  
pp. 2962-2672 ◽  
Author(s):  
Sivakumar Sukumaran ◽  
Marta S. Lopes ◽  
Susanne Dreisigacker ◽  
Laura E. Dixon ◽  
Meluleki Zikhali ◽  
...  

Crop Science ◽  
2018 ◽  
Vol 58 (5) ◽  
pp. 1838-1852 ◽  
Author(s):  
Jayfred Godoy ◽  
Shiferaw Gizaw ◽  
Shiaoman Chao ◽  
Nancy Blake ◽  
Arron Carter ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11857
Author(s):  
Akerke Amalova ◽  
Saule Abugalieva ◽  
Adylkhan Babkenov ◽  
Sandukash Babkenova ◽  
Yerlan Turuspekov

Background Bread wheat is the most important cereal in Kazakhstan, where it is grown on over 12 million hectares. One of the major constraints affecting wheat grain yield is drought due to the limited water supply. Hence, the development of drought-resistant cultivars is critical for ensuring food security in this country. Therefore, identifying quantitative trait loci (QTLs) associated with drought tolerance as an essential step in modern breeding activities, which rely on a marker-assisted selection approach. Methods A collection of 179 spring wheat accessions was tested under irrigated and rainfed conditions in Northern Kazakhstan over three years (2018, 2019, and 2020), during which data was collected on nine traits: heading date (HD), seed maturity date (SMD), plant height (PH), peduncle length (PL), number of productive spikes (NPS), spike length (SL), number of kernels per spike (NKS), thousand kernel weight (TKW), and kernels yield per m2 (YM2). The collection was genotyped using a 20,000 (20K) Illumina iSelect SNP array, and 8,662 polymorphic SNP markers were selected for a genome-wide association study (GWAS) to identify QTLs for targeted agronomic traits. Results Out of the total of 237 discovered QTLs, 50 were identified as being stable QTLs for irrigated and rainfed conditions in the Akmola region, Northern Kazakhstan; the identified QTLs were associated with all the studied traits except PH. The results indicate that nine QTLs for HD and 11 QTLs for SMD are presumably novel genetic factors identified in the irrigated and rainfed conditions of Northern Kazakhstan. The identified SNP markers of the QTLs for targeted traits in rainfed conditions can be applied to develop new competitive spring wheat cultivars in arid zones using a marker-assisted selection approach.


2015 ◽  
Vol 5 (3) ◽  
pp. 449-465 ◽  
Author(s):  
Marco Maccaferri ◽  
Junli Zhang ◽  
Peter Bulli ◽  
Zewdie Abate ◽  
Shiaoman Chao ◽  
...  

Abstract New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.


Sign in / Sign up

Export Citation Format

Share Document