scholarly journals Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects

Author(s):  
Seema Yadav ◽  
Xianming Wei ◽  
Priya Joyce ◽  
Felicity Atkin ◽  
Emily Deomano ◽  
...  

AbstractKey messageNon-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance.AbstractIn the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Akio Onogi ◽  
Toshio Watanabe ◽  
Atsushi Ogino ◽  
Kazuhito Kurogi ◽  
Kenji Togashi

Abstract Background Genomic prediction is now an essential technology for genetic improvement in animal and plant breeding. Whereas emphasis has been placed on predicting the breeding values, the prediction of non-additive genetic effects has also been of interest. In this study, we assessed the potential of genomic prediction using non-additive effects for phenotypic prediction in Japanese Black, a beef cattle breed. In addition, we examined the stability of variance component and genetic effect estimates against population size by subsampling with different sample sizes. Results Records of six carcass traits, namely, carcass weight, rib eye area, rib thickness, subcutaneous fat thickness, yield rate and beef marbling score, for 9850 animals were used for analyses. As the non-additive genetic effects, dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance effects were considered. The covariance structures of these genetic effects were defined using genome-wide SNPs. Using single-trait animal models with different combinations of genetic effects, it was found that 12.6–19.5 % of phenotypic variance were occupied by the additive-by-additive variance, whereas little dominance variance was observed. In cross-validation, adding the additive-by-additive effects had little influence on predictive accuracy and bias. Subsampling analyses showed that estimation of the additive-by-additive effects was highly variable when phenotypes were not available. On the other hand, the estimates of the additive-by-additive variance components were less affected by reduction of the population size. Conclusions The six carcass traits of Japanese Black cattle showed moderate or relatively high levels of additive-by-additive variance components, although incorporating the additive-by-additive effects did not improve the predictive accuracy. Subsampling analysis suggested that estimation of the additive-by-additive effects was highly reliant on the phenotypic values of the animals to be estimated, as supported by low off-diagonal values of the relationship matrix. On the other hand, estimates of the additive-by-additive variance components were relatively stable against reduction of the population size compared with the estimates of the corresponding genetic effects.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1055 ◽  
Author(s):  
Ying Liu ◽  
Lei Xu ◽  
Zezhao Wang ◽  
Ling Xu ◽  
Yan Chen ◽  
...  

Non-additive effects play important roles in determining genetic changes with regard to complex traits; however, such effects are usually ignored in genetic evaluation and quantitative trait locus (QTL) mapping analysis. In this study, a two-component genome-based restricted maximum likelihood (GREML) was applied to obtain the additive genetic variance and dominance variance for carcass weight (CW), dressing percentage (DP), meat percentage (MP), average daily gain (ADG), and chuck roll (CR) in 1233 Simmental beef cattle. We estimated predictive abilities using additive models (genomic best linear unbiased prediction (GBLUP) and BayesA) and dominance models (GBLUP-D and BayesAD). Moreover, genome-wide association studies (GWAS) considering both additive and dominance effects were performed using a multi-locus mixed-model (MLMM) approach. We found that the estimated dominance variances accounted for 15.8%, 16.1%, 5.1%, 4.2%, and 9.7% of the total phenotypic variance for CW, DP, MP, ADG, and CR, respectively. Compared with BayesA and GBLUP, we observed 0.5–1.1% increases in predictive abilities of BayesAD and 0.5–0.9% increases in predictive abilities of GBLUP-D, respectively. Notably, we identified a dominance association signal for carcass weight within RIMS2, a candidate gene that has been associated with carcass weight in beef cattle. Our results suggest that dominance effects yield variable degrees of contribution to the total genetic variance of the studied traits in Simmental beef cattle. BayesAD and GBLUP-D are convenient models for the improvement of genomic prediction, and the detection of QTLs using a dominance model shows promise for use in GWAS in cattle.


2019 ◽  
Author(s):  
Rajesh Joshi ◽  
John Woolliams ◽  
Theodorus Meuwissen ◽  
Hans Magnus Gjøen

AbstractBackgroundThe availability of both pedigree and genomic sources of information for animal breeding and genetics has created new challenges in understanding how best they may be utilized and how they may be interpreted. This study computed the variance components obtained using genomic information and compared these to the variances obtained using pedigree in a population generated to estimate non-additive genetic variance. Further, the impact of assumptions concerning Hardy-Weinberg Equilibrium (HWE) on the component estimates was examined. The magnitude of inbreeding depression for important commercial traits in Nile tilapia was estimated for the first time, here using genomic data.ResultsThe non-additive genetic variance in a Nile tilapia population was estimated from fullsib families and, where present, was found to be almost entirely additive by additive epistatic variance, although in pedigree studies this source is commonly assumed to arise from dominance. For body depth (BD) and body weight at harvest (BWH), the estimates of the additive by additive epistatic ratio (P<0.05) were found to be 0.15 and 0.17 in the current breeding population using genomic data. In addition, we found maternal variance (P<0.05) for BD, BWH, body length (BL) and fillet weight (FW), explaining approximately 10% of the observed phenotypic variance, which are comparable to the pedigree-based estimates. This study also disclosed detrimental effects of inbreeding in commercial traits of tilapia, which were estimated to cause 1.1%, 0.9%, 0.4% and 0.3% decrease in the trait value with 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively. The inbreeding depression and lack of dominance variance was consistent with an infinitesimal dominance modelConclusionsAn eventual utilisation of non-additive genetic effects in breeding schemes is not evident or straightforward from our findings, but inbreeding depression suggests for cross-breeding, although commercially this conclusion will depend on cost structures. However, the creation of maternal lines in Tilapia breeding schemes may be a possibility if this variation is found to be heritable.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ce Liu ◽  
Xiaoxiao Liu ◽  
Yike Han ◽  
Xi'ao Wang ◽  
Yuanyuan Ding ◽  
...  

Genomic prediction is an effective way for predicting complex traits, and it is becoming more essential in horticultural crop breeding. In this study, we applied genomic prediction in the breeding of cucumber plants. Eighty-one cucumber inbred lines were genotyped and 16,662 markers were identified to represent the genetic background of cucumber. Two populations, namely, diallel cross population and North Carolina II population, having 268 combinations in total were constructed from 81 inbred lines. Twelve cucumber commercial traits of these two populations in autumn 2018, spring 2019, and spring 2020 were collected for model training. General combining ability (GCA) models under five-fold cross-validation and cross-population validation were applied to model validation. Finally, the GCA performance of 81 inbred lines was estimated. Our results showed that the predictive ability for 12 traits ranged from 0.38 to 0.95 under the cross-validation strategy and ranged from −0.38 to 0.88 under the cross-population strategy. Besides, GCA models containing non-additive effects had significantly better performance than the pure additive GCA model for most of the investigated traits. Furthermore, there were a relatively higher proportion of additive-by-additive genetic variance components estimated by the full GCA model, especially for lower heritability traits, but the proportion of dominant genetic variance components was relatively small and stable. Our findings concluded that a genomic prediction protocol based on the GCA model theoretical framework can be applied to cucumber breeding, and it can also provide a reference for the single-cross breeding system of other crops.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
David González-Diéguez ◽  
Llibertat Tusell ◽  
Céline Carillier-Jacquin ◽  
Alban Bouquet ◽  
Zulma G. Vitezica

Abstract Background Mate allocation strategies that account for non-additive genetic effects can be used to maximize the overall genetic merit of future offspring. Accounting for dominance effects in genetic evaluations is easier in a genomic context, than in a classical pedigree-based context because the combinations of alleles at loci are known. The objective of our study was two-fold. First, dominance variance components were estimated for age at 100 kg (AGE), backfat depth (BD) at 140 days, and for average piglet weight at birth within litter (APWL). Second, the efficiency of mate allocation strategies that account for dominance and inbreeding depression to maximize the overall genetic merit of future offspring was explored. Results Genetic variance components were estimated using genomic models that included inbreeding depression with and without non-additive genetic effects (dominance). Models that included dominance effects did not fit the data better than the genomic additive model. Estimates of dominance variances, expressed as a percentage of additive genetic variance, were 20, 11, and 12% for AGE, BD, and APWL, respectively. Estimates of additive and dominance single nucleotide polymorphism effects were retrieved from the genetic variance component estimates and used to predict the outcome of matings in terms of total genetic and breeding values. Maximizing total genetic values instead of breeding values in matings gave the progeny an average advantage of − 0.79 days, − 0.04 mm, and 11.3 g for AGE, BD and APWL, respectively, but slightly reduced the expected additive genetic gain, e.g. by 1.8% for AGE. Conclusions Genomic mate allocation accounting for non-additive genetic effects is a feasible and potential strategy to improve the performance of the offspring without dramatically compromising additive genetic gain.


Author(s):  
Valentin Hivert ◽  
Julia Sidorenko ◽  
Florian Rohart ◽  
Michael E. Goddard ◽  
Jian Yang ◽  
...  

2019 ◽  
Vol 36 (5) ◽  
pp. 1517-1521
Author(s):  
Leilei Cui ◽  
Bin Yang ◽  
Nikolas Pontikos ◽  
Richard Mott ◽  
Lusheng Huang

Abstract Motivation During the past decade, genome-wide association studies (GWAS) have been used to map quantitative trait loci (QTLs) underlying complex traits. However, most GWAS focus on additive genetic effects while ignoring non-additive effects, on the assumption that most QTL act additively. Consequently, QTLs driven by dominance and other non-additive effects could be overlooked. Results We developed ADDO, a highly efficient tool to detect, classify and visualize QTLs with additive and non-additive effects. ADDO implements a mixed-model transformation to control for population structure and unequal relatedness that accounts for both additive and dominant genetic covariance among individuals, and decomposes single-nucleotide polymorphism effects as either additive, partial dominant, dominant or over-dominant. A matrix multiplication approach is used to accelerate the computation: a genome scan on 13 million markers from 900 individuals takes about 5 h with 10 CPUs. Analysis of simulated data confirms ADDO’s performance on traits with different additive and dominance genetic variance components. We showed two real examples in outbred rat where ADDO identified significant dominant QTL that were not detectable by an additive model. ADDO provides a systematic pipeline to characterize additive and non-additive QTL in whole genome sequence data, which complements current mainstream GWAS software for additive genetic effects. Availability and implementation ADDO is customizable and convenient to install and provides extensive analytics and visualizations. The package is freely available online at https://github.com/LeileiCui/ADDO. Supplementary information Supplementary data are available at Bioinformatics online.


2004 ◽  
Vol 83 (2) ◽  
pp. 121-132 ◽  
Author(s):  
WILLIAM G. HILL ◽  
XU-SHENG ZHANG

In standard models of quantitative traits, genotypes are assumed to differ in mean but not variance of the trait. Here we consider directional selection for a quantitative trait for which genotypes also confer differences in variability, viewed either as differences in residual phenotypic variance when individual loci are concerned or as differences in environmental variability when the whole genome is considered. At an individual locus with additive effects, the selective value of the increasing allele is given by ia/σ+½ixb/σ2, where i is the selection intensity, x is the standardized truncation point, σ2 is the phenotypic variance, and a/σ and b/σ2 are the standardized differences in mean and variance respectively between genotypes at the locus. Assuming additive effects on mean and variance across loci, the response to selection on phenotype in mean is iσAm2/σ+½ixcovAmv/σ2 and in variance is icovAmv/σ+½ixσ2Av/σ2, where σAm2 is the (usual) additive genetic variance of effects of genes on the mean, σ2Av is the corresponding additive genetic variance of their effects on the variance, and covAmv is the additive genetic covariance of their effects. Changes in variance also have to be corrected for any changes due to gene frequency change and for the Bulmer effect, and relevant formulae are given. It is shown that effects on variance are likely to be greatest when selection is intense and when selection is on individual phenotype or within family deviation rather than on family mean performance. The evidence for and implications of such variability in variance are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Abdullah Al Bari ◽  
Ping Zheng ◽  
Indalecio Viera ◽  
Hannah Worral ◽  
Stephen Szwiec ◽  
...  

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder’s toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction’s potential to a set of 482 pea (Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components—for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document