scholarly journals Insulin resistance causes increased beta-cell mass but defective glucose-stimulated insulin secretion in a murine model of type 2 diabetes

Diabetologia ◽  
2005 ◽  
Vol 49 (1) ◽  
pp. 90-99 ◽  
Author(s):  
Z. Asghar ◽  
D. Yau ◽  
F. Chan ◽  
D. LeRoith ◽  
C. B. Chan ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3846
Author(s):  
Jun Inaishi ◽  
Yoshifumi Saisho

Type 2 diabetes (T2DM) is characterized by insulin resistance and beta-cell dysfunction. Although insulin resistance is assumed to be a main pathophysiological feature of the development of T2DM, recent studies have revealed that a deficit of functional beta-cell mass is an essential factor for the pathophysiology of T2DM. Pancreatic fat contents increase with obesity and are suggested to cause beta-cell dysfunction. Since the beta-cell dysfunction induced by obesity or progressive decline with disease duration results in a worsening glycemic control, and treatment failure, preserving beta-cell mass is an important treatment strategy for T2DM. In this mini-review, we summarize the current knowledge on beta-cell mass, beta-cell function, and pancreas fat in obesity and T2DM, and we discuss treatment strategies for T2DM in relation to beta-cell preservation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Daniel Espes ◽  
Mats Martinell ◽  
Per-Ola Carlsson

Betatrophin has recently been described as a key hormone to stimulate beta-cell mass expansion in response to insulin resistance and obesity in mice. The finding has generated an interest in the development of antidiabetic drugs with betatrophin as the active component. However, the circulating levels of betatrophin in patients with type 2 diabetes are not well known. Betatrophin concentrations in plasma of 27 type 2 diabetes patients and 18 gender-, age-, and BMI-matched controls were measured. Study participants were characterized with regard to BMI, waist and hip circumference, blood pressure, and fasting plasma blood lipids, creatinine, glucose, HbA1c, and C-peptide. HOMA2 indices were calculated. Betatrophin was 40% higher in patients with type 2 diabetes (893±80versus639±66 pg/mL). Betatrophin positively correlated with age in the controls and with HbA1c in the type 2 diabetes patients. All study participants were insulin resistant with mean HOMA2B IR in both groups exceeding 2 andHOMA2%S<50%. Control individuals had impaired fasting glucose concentrations. In this report on betatrophin concentrations in type 2 diabetes and insulin resistance, elevated betatrophin levels were measured in the patients with type 2 diabetes. Future studies are clearly needed to delineate the exact role, if any, of betatrophin in regulating human beta-cell mass.


2020 ◽  
Author(s):  
Michael D. Schaid ◽  
Jeffrey M. Harrington ◽  
Grant M. Kelly ◽  
Sophia M. Sdao ◽  
Matthew J. Merrins ◽  
...  

ABSTRACTOf the β-cell signaling pathways altered by non-diabetic obesity and insulin resistance, some are adaptive while others actively contribute to β-cell failure and demise. Cytoplasmic calcium (Ca2+) and cyclic AMP (cAMP), which control the timing and amplitude of insulin secretion, are two important signaling intermediates that can be controlled by stimulatory and inhibitory G protein-coupled receptors. Previous work has shown the importance of the cAMP-inhibitory EP3 receptor in the beta-cell dysfunction of type 2 diabetes. To examine alterations in β-cell cAMP during diabetes progression we utilized a β-cell specific cAMP biosensor in tandem with islet Ca2+ recordings and insulin secretion assays. Three groups of C57BL/6J mice were used as a model of the progression from metabolic health to type 2 diabetes: wildtype, normoglycemic LeptinOb, and hyperglycemic LeptinOb. Here, we report robust increases in β-cell cAMP and insulin secretion responses in normoglycemic Leptinob mice as compared to wild-type: an effect that was lost in islets from hyperglycemic Leptinob mice, despite elevated Ca2+ duty cycle. Yet, the correlation of EP3 expression and activity to reduce cAMP levels and Ca2+ duty cycle with reduced insulin secretion only held true in hyperglycemic LeptinOb mice. Our results suggest alterations in beta-cell EP3 signaling may be both adaptive and maladaptive and define β-cell EP3 signaling as much more nuanced than previously understood.


2007 ◽  
Vol 292 (6) ◽  
pp. E1694-E1701 ◽  
Author(s):  
Jane J. Kim ◽  
Yoshiaki Kido ◽  
Philipp E. Scherer ◽  
Morris F. White ◽  
Domenico Accili

Type 2 diabetes results from impaired insulin action and β-cell dysfunction. There are at least two components to β-cell dysfunction: impaired insulin secretion and decreased β-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired β-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, ∼70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased β-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as β-cell mass gradually declined, indicating that replication-defective β-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous β-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of β-cell dysfunction in type 2 diabetes should positively affect both aspects of β-cell physiology.


2009 ◽  
Vol 21 (9) ◽  
pp. 14
Author(s):  
K. L. Gatford

Diabetes occurs when insulin secretion fails to increase sufficiently to compensate for developing insulin resistance. This implies that the increased risk of diabetes in adults who were small at birth reflects impaired insulin secretion as well as their well-known insulin resistance. More recently, direct evidence has been obtained that adults and children who were growth-restricted before birth secrete less insulin than they should, given their level of insulin resistance. Our research group is using the placentally-restricted (PR) sheep to investigate the mechanisms underlying impaired insulin action (sensitivity and secretion) induced by poor growth before birth. Like the intra-uterine growth-restricted (IUGR) human, the PR sheep develops impaired insulin action by adulthood, but has enhanced insulin sensitivity in infancy, associated with neonatal catch-up growth1, 2. Impaired insulin action begins to develop in early postnatal life, where although basal insulin action is high due to enhanced insulin sensitivity, maximal glucose-stimulated insulin action is already impaired in males3. Our cellular and molecular studies have identified impaired beta-cell function rather than mass as the likely cause of impaired insulin secretion, and we have reported a novel molecular defect in the calcium channels involved in the insulin secretion pathway in the pancreas of these lambs3. Upregulation of IGF-II and insulin receptor are implicated as key molecular regulators of beta-cell mass in the PR lamb3. By adulthood, both basal and maximal insulin action are profoundly impaired in the male lamb who was growth-restricted at birth2. These studies suggest therapies to prevent diabetes in the individual who grew poorly before birth should target beta-cell function, possibly in addition to further increasing beta-cell mass, to improve insulin secretion capacity, and its ability to increase in response to development of insulin resistance. We are now using the PR sheep to test potential therapies, since the timing of pancreatic development and hence exposure to a growth-restricting environment, is similar to that of the human.


2009 ◽  
Vol 56 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Aya OZE-FUKAI ◽  
Tomomi FUJISAWA ◽  
Ken SUGIMOTO ◽  
Koji NOJIMA ◽  
Nobuyasu SHINDO ◽  
...  

2016 ◽  
Vol 229 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Kaiyuan Yang ◽  
Jonathan Gotzmann ◽  
Sharee Kuny ◽  
Hui Huang ◽  
Yves Sauvé ◽  
...  

We compared the evolution of insulin resistance, hyperglycemia, and pancreatic β-cell dysfunction in the Nile rat (Arvicanthis niloticus), a diurnal rodent model of spontaneous type 2 diabetes (T2D), when maintained on regular laboratory chow versus a high-fiber diet. Chow-fed Nile rats already displayed symptoms characteristic of insulin resistance at 2 months (increased fat/lean mass ratio and hyperinsulinemia). Hyperglycemia was first detected at 6 months, with increased incidence at 12 months. By this age, pancreatic islet structure was disrupted (increased α-cell area), insulin secretion was impaired (reduced insulin secretion and content) in isolated islets, insulin processing was compromised (accumulation of proinsulin and C-peptide inside islets), and endoplasmic reticulum (ER) chaperone protein ERp44 was upregulated in insulin-producing β-cells. By contrast, high-fiber-fed Nile rats had normoglycemia with compensatory increase in β-cell mass resulting in maintained pancreatic function. Fasting glucose levels were predicted by the α/β-cell ratios. Our results show that Nile rats fed chow recapitulate the five stages of progression of T2D as occurs in human disease, including insulin-resistant hyperglycemia and pancreatic islet β-cell dysfunction associated with ER stress. Modification of diet alone permits long-term β-cell compensation and prevents T2D.


Sign in / Sign up

Export Citation Format

Share Document