scholarly journals Introduction to the special issue on the Flatreef PGE-Ni-Cu deposit, northern limb of the Bushveld Igneous Complex

Author(s):  
Wolfgang D. Maier ◽  
Marina Yudovskaya ◽  
Pedro Jugo

AbstractMore than 30 years ago, Cox and Singer (1986) suggested that magmatic platinum-group element (PGE)-Ni-Cu deposits are amongst the best understood of ore deposits, yet the origin of PGE mineralization in the Bushveld Igneous Complex (BIC) remains controversial after a century of study. In the northern limb of the BIC, the unravelling of ore formation proved particularly difficult due to relatively poor outcrop, which is typically affected by contamination of the intruding magmas with the host rocks and expressed in the form of abundant xenoliths, footwall rafts and disturbance of magmatic stratigraphy. In this thematic issue, we present contributions on the Flatreef, a recently discovered world-class PGE-Ni-Cu deposit constituting a downdip extension of the mineralized unit of the Platreef of the northern limb. Two deep shafts are currently being sunk, making the Flatreef one of the most significant new mine development on the Bushveld in several decades.

Author(s):  
Evan Keir-Sage ◽  
Matthew I. Leybourne ◽  
Pedro J. Jugo ◽  
Danie F. Grobler ◽  
Cédric C. Mayer

Abstract The proximity to metasedimentary footwall rocks relative to platinum group element (PGE) mineralized intrusive rocks in the northern limb of the Bushveld Igneous Complex (BIC) has resulted in complex local contamination in the intrusions. To assess the extent of incorporation of non-magmatic material and its effects on PGE mineralization, major element, trace element, and S isotopic data were collected from drill core UMT094 on the Turfspruit farm, where core logging has shown that the mineralized Platreef, forming the Flatreef deposit, is located stratigraphically well above local sedimentary footwall rocks. The S isotopic data combined with whole rock geochemistry data (including CaO/Al2O3, (V/Ti)PM, (Ni/Cr)PM, S/Se, loss on ignition) were used to assess incorporation of a range of local footwall material. The δ34S data show a steady decrease from the footwall assimilation zone (δ34S typically + 8 to + 9‰, maximum 12‰) to near constant δ34S values (δ34S < + 4‰) below the main PGE reef. Similar values have been documented for the Merensky Reef in the eastern and western limbs of the BIC (δ34S ~ 0 to + 3.5‰). Other geochemical parameters, such as S/Se and CaO/Al2O3, also match the ranges documented for the Merensky Reef elsewhere in the BIC. In addition, parameters such as whole rock V/Ti, normalized to primitive mantle (V/Ti)PM, are shown to be useful indicators of contamination and the type of contaminant with 1 < (V/Ti)PM < 2 for uncontaminated magmatic units; [V/Ti]pm > 2 for shale assimilation; and [V/Ti]pm < 1 for carbonate assimilation. The results suggest that the main PGE mineralization in the Flatreef deposit formed without significant in situ contamination and that the primary mechanism of PGE mineralization in the Platreef at Turfspruit was no different than the mechanism that generated the Merensky Reef in the eastern and western limbs of the BIC.


2021 ◽  
Vol 59 (6) ◽  
pp. 1339-1362
Author(s):  
Malose M. Langa ◽  
Pedro J. Jugo ◽  
Matthew I. Leybourne ◽  
Danie F. Grobler

ABSTRACT The UG-2 chromitite layer, with its elevated platinum-group element content, is a key marker horizon in the eastern and western limbs of the Bushveld Igneous Complex and the largest platinum-group element chromite-hosted resource of its kind in the world. In contrast, much less is known about its stratigraphic equivalent in the northern limb, the “UG-2 equivalent” (UG-2E) chromitite. Recent studies on chromite mineral chemistry show similarities between the UG-2 and sections of the UG-2E, but also that the UG-2E was partially contaminated by assimilation of local metasedimentary rocks. Here, we provide a detailed characterization of sulfide minerals and platinum-group minerals in a suite of samples from the UG-2E and compare the results with data obtained from a reference suite of samples from the UG-2. Results from petrographic observations, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectrometry, quantitative evaluation of materials by scanning electron microscopy, and δ34S isotopes show that: (1) sulfide minerals in the UG-2E and UG-2 consist mainly of pentlandite-chalcopyrite-pyrrhotite, but pyrrhotite is significantly more abundant in the UG-2E and almost absent in the UG-2; (2) iron contents in pentlandite from the UG-2E are significantly higher than in the UG-2; (3) platinum-group element contents within sulfide minerals are different between the two chromitites; (4) UG-2E platinum-group minerals are dominated by arsenides and bismuthotellurides, and by alloys and platinum-group element-sulfide minerals in the UG-2; (5) sulfide mineral chemistry and δ34S values indicate some crustal contamination of the UG-2E; and (6) sulfide mineral and secondary silicate mineral textures in both the UG-2E and UG-2 are indicative of minor, millimeter- to centimeter-scale, hydrothermal alteration. From our observations and results, we consider the UG-2E chromitite in the northern limb to be the equivalent to the UG-2 in the eastern and western limbs that has been contaminated by assimilation of Transvaal Supergroup footwall rocks during emplacement. The contamination resulted in UG-2E sulfide mineral elemental contents and platinum-group mineral types and abundances that are distinct from those of the UG-2 in the rest of the Bushveld.


2019 ◽  
Vol 114 (7) ◽  
pp. 1251-1284 ◽  
Author(s):  
Johannes Mederer ◽  
Robert Moritz ◽  
Massimo Chiaradia ◽  
Richard Spikings ◽  
Jorge E. Spangenberg ◽  
...  

Abstract The Kapan mining district in the southernmost Lesser Caucasus is one of the few locations along the central Tethyan metallogenic belt where ore-forming processes were associated with magmatic arc growth during Jurassic Tethys subduction along the Eurasian margin. Three ore deposits of the Kapan district were investigated in this study: Centralni West, Centralni East, and Shahumyan. The ore deposits are hosted by Middle Jurassic andesitic to dacitic volcanic and volcaniclastic rocks of tholeiitic to transitional affinities below a late Oxfordian unconformity, which is covered by calc-alkaline to transitional Late Jurassic-Early Cretaceous volcanic rocks interlayered with sedimentary rocks. The mineralization consists of veins, subsidiary stockwork, and partial matrix replacement of breccia host rocks, with chalcopyrite, pyrite, tennantite-tetrahedrite, sphalerite, and galena as the main ore minerals. Centralni West is a dominantly Cu deposit, and its host rocks are altered to chlorite, carbonate, epidote, and sericite. At Centralni East, Au is associated with Cu, and the Shahumyan deposit is enriched in Pb and Zn as well as precious metals. Both deposits contain high-sulfidation mineral assemblages with enargite and luzonite. Dickite, sericite, and diaspore prevail in altered host rocks in the Centralni East deposit. At the Shahumyan deposit, phyllic to argillic alteration with sericite, quartz, pyrite, and dickite is dominant with polymetallic veins, and advanced argillic alteration with quartz-alunite ± kaolinite and dickite is locally developed. The lead isotope composition of sulfides and alunite (206Pb/204Pb = 18.17–18.32, 207Pb/204Pb = 15.57–15.61, 208Pb/204Pb = 38.17–38.41) indicates a common metal source for the three deposits and suggests that metals were derived from magmatic fluids that were exsolved upon crystallization of Middle Jurassic intrusive rocks or leached from Middle Jurassic country rocks. The δ18O values of hydrothermal quartz (8.3–16.4‰) and the δ34S values of sulfides (2.0–6.5‰) reveal a dominantly magmatic source at all three deposits. Combined oxygen, carbon, and strontium isotope compositions of hydrothermal calcite (δ18O = 7.7–15.4‰, δ13C = −3.4−+0.7‰, 87Sr/86Sr = 0.70537–0.70586) support mixing of magmatic-derived fluids with seawater during the last stages of ore formation at Shahumyan and Centralni West. 40Ar/39Ar dating of hydrothermal muscovite at Centralni West and of magmatic-hydrothermal alunite at Shahumyan yield, respectively, a robust plateau age of 161.78 ± 0.79 Ma and a disturbed plateau age of 156.14 ± 0.79 Ma. Re-Os dating of pyrite from the Centralni East deposit yields an isochron age of 144.7 ± 4.2 Ma and a weighted average age of the model dates of 146.2 ± 3.4 Ma, which are younger than the age of the immediate host rocks. Two different models are offered, depending on the reliability attributed to the disturbed 40Ar/39Ar alunite age and the young Re-Os age. The preferred interpretation is that the Centralni West Cu deposit is a volcanogenic massive sulfide deposit and the Shahumyan and Centralni East deposits are parts of porphyryepithermal systems, with the three deposits being broadly coeval or formed within a short time interval in a nascent magmatic arc setting, before the late Oxfordian. Alternatively, but less likely, the three deposits could represent different mineralization styles successively emplaced during evolution and growth of a magmatic arc during a longer time frame between the Middle and Late Jurassic.


1974 ◽  
Vol 11 (2) ◽  
pp. 211-223 ◽  
Author(s):  
F. W. Beales ◽  
J. C. Carracedo ◽  
D. W. Strangway

Paleomagnetism can provide useful information about the stratigraphic relationships between the host rocks and the ore of some ore deposits.Four North American mines with stratabound ore deposits of Mississippi Valley type were sampled and the direction and intensity of the natural remanent magnetization (NRM) were measured. Two of the sites sampled (Newfoundland Zinc Co. property near Daniel's Harbour in western Newfoundland and the St. Joe Minerals Co., #8 Mine in southeast Missouri) had a weak, but measurable NRM in both host and ore rocks. This magnetization proved to be highly stable upon alternating field (AF) demagnetization. The other two mines (Magmont Mine, southeast Missouri, and Pine Point Mine, Northwest Territories, Canada) had intensities of magnetization too low to be measured after demagnetization.The pole positions computed for the ores and their corresponding hosts are identical within the statistical uncertainty, strongly suggesting that the ore and the host are, geologically speaking, of roughly the same age. This study gives two reliable pole positions, one for late lower Ordovician dolostone and sphalerite ore from Newfoundland of 26 °N, 126 °E, and the other for the upper Cambrian, based on the Bonneterre dolostone and galena ore from southeast Missouri of 35 °S, 170 °W.Within the present limitations of the method the results agree with published opinions concerning the age of the ore, i.e. that host rock and ore formation were relatively close in time. Therefore, when significant time differences occur between epigenetic ores and their host rocks, the method may be expected to define this. The method will become progressively more valuable as the apparent polar wandering curves for various continental areas become better defined.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 819
Author(s):  
Nadezhda Krivolutskaya ◽  
Sheida Makvandi ◽  
Bronislav Gongalsky ◽  
Irina Kubrakova ◽  
Natalia Svirskaya

The composition of the parental magmas of Cu–Ni deposits is crucial for the elucidation of their genesis. In order to estimate the role of magma in ore formation, it is necessary to compare the compositions of silicate rock intrusions with different mineralization patterns, as observed in the Norilsk region. The rock geochemistry of two massifs located in the same Devonian carbonate rocks—the Kharaelakh intrusion, with its world-class platinum-group element (PGE)–Cu–Ni deposit, and the Pyasinsky–Vologochansky intrusion, with its large deposit—was studied. Along with these massifs, the Norilsk 2 massif with noneconomic mineralization intruded in the Ivakinskaya–Nadezhdinskaya basalts was studied as well. Their settings allow the estimation of the parental magma composition, taking into account the possible assimilation of host rocks. Analyses of 39 elements in 97 samples demonstrated the similarity of the intrusions in terms of their major components. The Pyasinsky–Vologochansky intrusion contains the highest trace element contents compared with the Kharaelakh and Norilsk 2 massifs, evidencing its crystallization from evolved parental magma. No influence of host rocks on the silicate rock compositions was found, except for narrow (1–2 m) endo-contact zones. There is no correlation between the mineralization volume and the rock compositions of the studied intrusions. It is assumed that the intrusions were formed from one magma crustal source irregularly rich in sulfur (S). This source inhomogeneity in terms of the sulfur distribution resulted in deposits of varying sizes. The magmas served as a transporting agent for sulfides from deep zones to the surface.


2017 ◽  
Author(s):  
Travis Lewis Steiner-Leach ◽  
◽  
Maureen Feineman ◽  
Sarah Penniston-Dorland ◽  
Nivea Magalhaes ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Mónica Arias ◽  
Pablo Nuñez ◽  
Daniel Arias ◽  
Pablo Gumiel ◽  
Cesar Castañón ◽  
...  

The Touro volcanogenic massive sulfide (VMS) deposit is located in the NW of the Iberian Variscan massif in the Galicia-Trás-os-Montes Zone, an amalgamation of several allochthonous terrains. The Órdenes complex is the most extensive of the allochthone complexes, and amphibolites and paragneisses host the deposit, characterized as being massive or semimassive (stringers) sulfides, mostly made up of pyrrhotite and chalcopyrite. The total resources are 103 Mt, containing 0.41% copper. A 3D model of the different orebodies and host rocks was generated using data from 1090 drill core logs. The model revealed that the structure of the area is a N–S-trending antiform. The orebodies crop out in the limbs and in the hinge zone. The mineralized structures are mostly tabular, up to 100 m in thickness and subhorizontal. Based on the petrography, geochemistry and the 3D model, the Touro deposit is classified as a VMS of the mafic-siliciclastic type formed in an Ordovician back-arc setting, which was buried and metamorphosed in Middle Devonian.


Sign in / Sign up

Export Citation Format

Share Document