Displacement of Paraquat Solution Through a Saturated Soil Column with Contrasting Organic Matter Content

Author(s):  
Y. Ouyang ◽  
R. S. Mansell ◽  
P. Nkedi-Kizza
Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1291 ◽  
Author(s):  
B. S. Ismail ◽  
K. Kalithasan

The mobility of metsulfuron-methyl in 5 soil series with different organic contents was determined in a greenhouse as well as under natural conditions. In these studies, the movement and biological activity of metsulfuron-methyl were determined by the bioassay method using long bean as a bioassay species. Bioactivity and movement of the herbicide down the soil profile were inversely related to the organic matter content of the soil. Phytotoxic levels of metsulfuron-methyl were restricted to the 10-cm depth of the column containing Selangor Series soil except when it received 40 mL of water daily (depth, 10–15 cm). In Munchung Series, the phytotoxic level was also mainly in the 5–10 cm layer. However, when the column received 40 mL daily or every 4 days, the residue was detected in 15–20 cm and 10–15 cm zones, respectively. The phytotoxic level moved downward to the 20–25 cm layer both in Sogomana and Holyrood Series when 40 mL of water was given daily. A phytotoxic level of metsulfuron herbicide was detected in the 20–25 cm layer when the soil column containing Serdang Series was leached with 40 mL of water every 4 days or with 20 mL daily; the phytotoxic level was detected at a depth of 25–30 cm when this soil was watered daily with 40 mL. The downward movement of metsulfuron under natural conditions showed a pattern similar to that found under simulated conditions. Phytotoxic effects of the residue could be detected in the 25–30 cm and 15–20 cm zone of Serdang and Holyrood Series, respectively, after exposure to 20 days of rainfall (total 111·9 mm). Phytotoxic residue in both Sogomana and Munchung Series soil was detected in the 10–15 cm layer, and in the 5–10 cm layer for Selangor Series soil, after exposure to 20 days of rainfall. After exposure to 40 days of rainfall (total 152·8 mm) under natural conditions, the residue could be detected in the 15–20 cm layer of Selangor Series. The phytotoxic level moved deeper in soil with low organic matter after exposure to 40 days of rainfall. Fresh weight reduction was greater in the 20–30 cm layer in Serdang Series than in the top layer.


Author(s):  
A. M. Grebennikov ◽  
V. A. Isaev ◽  
Yu. I. Cheverdin ◽  
V. M. Garmashov ◽  
N. А. Nuzhnaya ◽  
...  

In a field experiment on legalistic migration mizelialnah agrofermotech the South-East of CCZ considers the influence of processing method on agrochemical soil properties in a year and four years after laying the experience. To take into account the effect of tillage on the agrochemical properties of the soils in the corresponding experimental variants the humus content were determined by Tyurin and carbonates by Kozlovsky and mobile phosphorus and exchange potassium – according to Chirikov in depths of 0–10, 10–20, 20–30, 30–40, 40–50 cm in the selected samples. A study of the change in stocks of soil properties important for plant nutrition along the profile to a depth commensurate with the extent of the root system of crops was made. In assessing the heterogeneity of agro-chernozems on plots with different main tillage methods the coefficient of variation of the organic matter content, mobile phosphorus, and metabolic potassium in soil samples taken from depths of 0 - 10, 10 - 20, and 20 - 30 cm were calculated. It is shown that for the three years that passed between the agrochemical properties of some trends in the distribution of nutrients and organic matter on variations of the experience have remained virtually unchanged, whereas were marked and significant changes of these parameters in the upper layer of the soil column, depending on the applied processing method. The increase in the reserves of organic matter and plant nutrients in the variant with zero treatment compared to other methods, observed after four years of experiments, is apparently associated with the manifestation of the fertilizing effect of soil with mulch rotting, applied at zero treatment on the surface of agrochernozems.


2000 ◽  
Vol 35 (4) ◽  
pp. 693-710 ◽  
Author(s):  
B.D. Hill ◽  
J.J. Miller ◽  
K.N. Harker ◽  
S.D. Byers ◽  
D.J. Inaba ◽  
...  

Abstract Our objective was to use a simple screening model to predict the relative leaching of herbicides in Alberta soils to allow producers the option of choosing herbicides with lower leaching potential. Physical properties for each herbicide were obtained from the literature and the Laskowski model was used to calculate the leaching potential (LP) of the herbicides. Relative LP rankings (LPR) were then created by ranking herbicide LP values on a 1 to 9 scale (1 = no leaching; 9 = high leaching). The leaching rates of nine herbicides (2,4-D, dicamba, MCPA, diclofop, quinclorac, bromoxynil, fenoxaprop, triallate and trifluralin) were then determined on soils from the five major soil zones of Alberta (Brown, Dark Brown, Grey, Dark Grey and Black) using small packed soil columns. Eluate fractions were analyzed using a MSD-GC method. Although there were differences related to soil organic matter content, the relative rates of leaching among the nine herbicides were generally quite consistent. Dicamba, 2,4-D, MCPA and quinclorac leached most readily, followed by bromoxynil, and then diclofop, fenoxaprop and triallate, and finally trifluralin, which did not leach. These soil column results and previous field results validated the LPR for most of the nine herbicides. The LPR did appear to underestimate the leaching of MCPA, bromoxynil and quinclorac. LPR values (1 to 9 scale) are a convenient way to convey herbicide leaching information to producers and could easily be included in herbicide guides along with certain provisos.


Author(s):  
O. A. Lipatnikova

The study of heavy metal speciation in bottom sediments of the Vyshnevolotsky water reservoir is presented in this paper. Sequential selective procedure was used to determine the heavy metal speciation in bottom sediments and thermodynamic calculation — to determine ones in interstitial water. It has been shown that Mn are mainly presented in exchangeable and carbonate forms; for Fe, Zn, Pb и Co the forms are related to iron and manganese hydroxides is played an important role; and Cu and Ni are mainly associated with organic matter. In interstitial waters the main forms of heavy metal speciation are free ions for Zn, Ni, Co and Cd, carbonate complexes for Pb, fulvate complexes for Cu. Effects of particle size and organic matter content in sediments on distribution of mobile and potentially mobile forms of toxic elements have been revealed.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


Sign in / Sign up

Export Citation Format

Share Document