scholarly journals Structural optimisation of diffusion driven degradation processes

Author(s):  
Navina Waschinsky ◽  
Franz-Joseph Barthold ◽  
Andreas Menzel

AbstractIn this article, we propose an optimisation framework that can contribute to the prevention of premature failure or damage to building structures and can thereby strengthen their longevity. We concentrate on structures that are contaminated by chemical substances and that have strong destructive effects on the material. The aim of this contribution is a mathematical algorithm that allows the optimisation of a structure exposed to chemical influences and thus the assurance of the static load capacity. To achieve this, we present a coupled mechanical-diffusion-degradation approach embedded in a finite element (FE) framework. Furthermore, we integrate an optimisation algorithm to reduce material degradation. In this paper, we establish shape optimisation of a structure with a gradient based optimisation algorithm.

2021 ◽  
pp. 1-25
Author(s):  
S. Shitrit

Abstract The aerodynamic performance of conventional aircraft configurations are mainly affected by the wing and horizontal tail. Drag reduction by shape optimisation of the wing, while taking into account the aircraft trimmed constraint, has more benefit than focusing solely on the wing. So in order to evaluate this approach, the following study presents results of a single and multipoint aerodynamic shape optimisation of the wing-body-tail configuration, defined by the Aerodynamic Design Discussion Group (ADODG). Most of the aerodynamic shape optimisation problems published in the last years are focused mainly on the wing as the main driver for performance improvement, with no trim constraint and/or excess drag obtained from the fuselage, fins or other parts. This work partially fills this gap by an investigation of RANS-based aerodynamic optimisation for transonic trimmed flight. Mesh warping and geometry parametrisation is accomplished by fitting the multi-block structured grid to a B-spline volumes and performing the mesh movement by using surface control points embedded within the free-form deformation (FFD) volumes. A gradient-based optimisation algorithm is used with an adjoint method in order to compute the derivatives of the objective and constraint functions with respect to the design variables. In this work the aerodynamic shape optimisation of the CRM wing-body-tail configuration is investigated, including a trim constraint that is satisfied by rotating the horizontal tail. The shape optimisation is driven by 432 design variables that envelope the wing surface, and 120 shape variables for the tail, as well as the angle of attack and tail rotation angles. The constraints are the lift coefficient, wing’s thickness controlled by 1,000 control points, and the wing’s volume. For the untrimmed configuration the drag coefficient is reduced by 5.76%. Optimising the wing with a trim condition by tail rotation results in shock-free design with a considerably improved drag, even better than the untrimmed-optimised case. The second optimisation problem studied is a single and multi-point lift constraint drag minimisation of a gliding configuration wing in transonic viscous flow. The shock is eliminated, reducing the drag of the untrimmed configuration by more than 60%, using 192 design variables. Further robustness is achieved through a multi-point optimisation with more than 45% drag reduction.


2015 ◽  
Vol 240 ◽  
pp. 218-224 ◽  
Author(s):  
Mirosław Wieczorek

In the time of the exploitation of building structures frequently situations do occur, in which due to failures they are exposed to much higher loads than has been originally predicted. In a state of emergency due to overloading of the structure, significant reserves of load capacity may be appear in the case of a self-acting tension member work. The aim of the paper was to demonstrate the influence of reinforced steel parameters and its quantity on the mechanism of destruction of four three-span models of reinforced concrete strips with the dimensions 7140×500×190 mm. The paper contains the description of the test stand and test models and the results of experimental tests which were compared with the results of the calculations based on traditional methods.


Author(s):  
Qian Wang ◽  
Lucas Schmotzer ◽  
Yongwook Kim

Design of building structures has long been based on a trial-and-error iterative approach. Structural optimization provides practicing engineers an effective and efficient approach to replace the traditional design method. A numerical optimization algorithm, such as a gradient-based method or genetic algorithm (GA), can be applied, in conjunction with a finite element (FE) analysis program. The FE program is used to compute the structural responses, such as forces and displacements, which represent the design constraint functions. In this method, reading and writing the input/output files of the FE program and interface programming are required. Another method to perform structural optimization is to create an approximate constraint function, which involves implicit structural responses. This is referred to as a surrogate or metamodeling method. The structural responses can be expressed as approximate functions, based on a number of preselected sample points. In this study, an adaptive metamodeling method was studied and applied to a building structure. The FE analyses were first performed at the sample points, and metamodels were constructed. A gradient-based optimization algorithm was applied. Additional samples were generated and additional FE analyses were conducted so that the model accuracy could be improved, close to the optimal design points. This adaptive scheme was continued, until the objective function values converged. The method worked well and optimal designs were found within a few iterations.


2006 ◽  
Vol 110 (1112) ◽  
pp. 659-672 ◽  
Author(s):  
L. F. Gonzalez ◽  
D. S. Lee ◽  
K. Srinivas ◽  
K. C. Wong

Abstract Unmanned aerial vehicle (UAV) design tends to focus on sensors, payload and navigation systems, as these are the most expensive components. One area that is often overlooked in UAV design is airframe and aerodynamic shape optimisation. As for manned aircraft, optimisation is important in order to extend the operational envelope and efficiency of these vehicles. A traditional approach to optimisation is to use gradient-based techniques. These techniques are effective when applied to specific problems and within a specified range. These methods are efficient for finding optimal global solutions if the objective functions and constraints are differentiable. If a broader application of the optimiser is desired, or when the complexity of the problem arises because it is multi-modal, involves approximation, is non-differentiable, or involves multiple objectives and physics, as it is often the case in aerodynamic optimisation, more robust and alternative numerical tools are required. Emerging techniques such as evolutionary algorithms (EAs) have been shown to be robust as they require no derivatives or gradients of the objective function, have the capability of finding globally optimum solutions among many local optima, are easily executed in parallel, and can be adapted to arbitrary solver codes without major modifications. In this paper, the formulation and application of a evolutionary technique for aerofoil shape optimisation is described. Initially, the paper presents an introduction to the features of the method and a short discussion on multi-objective optimisation. The method is first illustrated on its application to mathematical test cases. Then it is applied to representative test cases related to aerofoil design. Results indicate the ability of the method for finding optimal solutions and capturing Pareto optimal fronts.


Author(s):  
Nirmal Kumar Mandal

Free ends of insulated rail joints occur because gaps between the rails and endposts can be created due to pull-apart problems as the rails contract longitudinally in winter and by degradation of railhead material. Dynamic behaviour of gapped rail joints changes adversely compared to that of insulated rail joints. Thus, material degradation and damage of gapped rail joint components such as rail ends, joint bars, etc. are accelerated. Only limited literatures are available addressing the free end of rail effects at rail joints, targeting stress and pressure distributions in the vicinity of the rail joints. To understand clearly the material degradation and delamination process of gapped rail joints, a thorough analysis of failure of both insulated rail joints and gapped rail joints and subsequent damage of the railhead material is necessary to improve the service life of these joints. A new three-dimensional finite element analysis is carried out in this paper to assess damage to railhead material when gapped rail joints form. Both narrow (5 mm) and wide (10 mm) gaps are considered, using a peak vertical pressure load of 2500 MPa applied cyclically at one rail end, forming vertical impacts. Stress distributions and plastic deformations in the vicinity of gapped rail joints are quantified using finite element analysis data and compared with that of the insulated rail joints to show the effects of free rail ends. Residual stress and strain distributions indicate the damage to the railhead material. Equivalent plastic strain (PEEQ) quantifies the progressive damage to the railhead material at the rail ends. The free end of rail effects can be further illustrated by comparing PEEQ for insulated rail joints and gapped rail joints. The railhead material of 5 and 10 mm gapped rail joints is more sensitive to permanent deformation compared to that of the corresponding insulated rail joints. Therefore, free rail end joints pose an increased potential threat to rail operations in relation to crack initiation, damage and premature failure of railhead material.


2020 ◽  
Vol 156 ◽  
pp. 05002
Author(s):  
Roni Suhendra ◽  
Zulfikar Djauhari ◽  
Reni Suryanita ◽  
Enno Yuniarto

Technological developments in the field of construction today increasingly developed, structures built not only irregular but also irregular. Story of the irregular-structure building significantly shaped affect the building collapse. The collapse of this building can be a collapse of natural and artificial collapse. The natural collapse was a collapse caused by the load capacity received by building or exceeds the capabilities of the structure itself. The potential of structural failure due to their natural collapse can lead to progressive collapse. This research aimed to analyse the influence of flat slab against progressive collapse at irregular building structures, and determine the type of collapse that occurred at irregular building structures. This research was conducted by analysing the structural elements of the first destroyed by the addition of the maximum load. The analysis is done by eliminating one or more of the critical column based on the General Service Administration (GSA). Examination of the power structures using finite element based software, based on the value Demand Capacity Ratio (DCR). Irregular building structures undergo a progressive collapse if the value of DCR> 1. The analysis showed a progressive collapse does not occur at irregular building structures, due to the building using structural elements in the form of a flat slab. The collapse happened only on some elements of the building structure, does not occur in the whole structure of the building.


Author(s):  
Don Metzger ◽  
Wolf Reinhardt

The integrity of components can be affected by certain material degradation mechanisms that cause a loss of ductility. In cases where the component loading is primarily in bending, a loss of ductility can significantly reduce the load capacity. Material degradation may be determined by component testing involving the bending mode. In such cases, characterizing the material response in terms of yield stress, ultimate stress and failure strain is complicated by the nature of the load curve due to bending. The objective of this work is to examine in detail the relationship between tensile and bending response, with particular attention to the condition of decreasing ductility.


2018 ◽  
Vol 245 ◽  
pp. 03004 ◽  
Author(s):  
Marina Gravit ◽  
Elena Golub

Fire protection of building structures under the hydrocarbon fire is becoming more relevant, especially in the design and construction of oil and gas and chemical complex facilities, including offshore fixed platforms, liquefied natural gas production and storage facilities and other objects of the fuel and energy complex. The development dynamics of such a fire requires a different approach to testing the structures in order to determine the fire resistance limit. The fire resistance tests of a steel horizontal structure with a fire resistance suspended ceiling of PROMATECT-T plates were carried out under the condition of creating a hydrocarbon temperature combustion regime. A detailed description of the tested ceiling design is given. It is shown that at the time of the end of the fire action, the limit state due to the loss of load capacity (R) and loss of integrity (E) was not recorded when the test reached 120 minutes.


Sign in / Sign up

Export Citation Format

Share Document