The effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steel

2012 ◽  
Vol 66 (5-8) ◽  
pp. 955-964 ◽  
Author(s):  
Xiaobin Cui ◽  
Jun Zhao ◽  
Yongwang Dong
2010 ◽  
Vol 431-432 ◽  
pp. 245-248
Author(s):  
Yu Wang ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Xian Li Liu

PCBN cutting tools is in high speed, high temperature and high pressure environment when high speed precision hard cutting hardened steel. Shear extrusion and slip effect in high speed cutting, cutting tools wear mechanisms are different from common cutting, even cutting tools wear mechanisms in high speed is in research stage at present. In this paper, coated PCBN cutting tools wear mechanisms in high speed cutting(v=200~600m/min) GCr15 (HRC62-64) is studied, it is helpful to obtain cutting tools structure design, cutting parameters and improve cutting tools use efficiency.


2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


Author(s):  
E. O. Ezugwu ◽  
J. Bonney ◽  
W. F. Sales ◽  
R. B. da Silva

Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. In this study PCD tools were evaluated when machining Ti-6Al-4V alloy at high speed conditions under high pressure coolant supplies. Increase in coolant pressure tend to improve tool life and minimise adhesion of the work material on the cutting tool during machining. Adhesion can be accelerated by the susceptibility of titanium alloy to galling during machining.


2013 ◽  
Vol 770 ◽  
pp. 74-77 ◽  
Author(s):  
Jin Xing Kong ◽  
Liang Li ◽  
Dong Ming Xu ◽  
Ning He

Pure iron is a kind of high plasticity and toughness material. In the process of cutting pure iron, the tool wear is very serious. In this paper, three kinds of cutting tools KC5010, K313 and 1105 are used in the cutting pure iron process and the tool wear tests in dry cutting condition with different cutting parameters have been carried out. According to the results, the tool wear mechanisms and tool life of three kinds of cutting tools have been compared and analyzed. It is concluded that the tool life of K313 is better than KC5010 and 1105 and the three kinds of tool mechanisms are primarily adhesion wear, diffusion wear and oxidation wear.


2015 ◽  
Vol 809-810 ◽  
pp. 87-92
Author(s):  
Irina Beşliu ◽  
Laurenţiu Slătineanu ◽  
Dumitru Amarandei

Hard milling is considered to be a precise and efficient machining method for the die and mold manufacturing industry. The main criterion for evaluating the cutting processes of the parts designed for these applications is the quality of the machined surfaces. For this reason, the analysis of the factors that influence the surface roughness obtained in this processes is important for helping the process become more productive and competitive. The present paper presents some results and an empirical model for surface roughness when high speeds face milling of AISI W1 tool steel. The influence of cutting parameters and material hardness is investigated by using Taguchi design of experiments. The results obtained show that high speed face milling of hardened tool steel AISI W1 can be carried out in economical conditions(on plant milling machines) and can lead to satisfactory surface quality (Ra =0.2-0.36 μm).


2012 ◽  
Vol 488-489 ◽  
pp. 724-728 ◽  
Author(s):  
Tadahiro Wada

Using polycrystalline cubic boron nitride compact (cBN) tools, which have different cBN contents and cBN particle sizes, the influences of both the cBN content and the cBN particle size on tool wear in turning of hardened steel at various cutting speeds was experimentally investigated. Three types of cBN tools (a cBN content of 45-55% and 75%, and a cBN particle size of 0.5 μm and 5 μm, respectively) were tested. Furthermore, three kinds of chamfered and honed cutting edges were also used. The main results obtained are as follows: (1) In the case of the cBN tools with the same cBN particle size of 5.0 μm, the tool life of the cBN tool with a cBN content of 75% was longer than that of the cBN tool with a cBN content of 45% at low cutting speed. However, at high cutting speed, the tool life of the cBN tool with a cBN content of 75% was shorter. (2) The tool life of the cBN tool with both a cBN content of 55% and a cBN particle size of 0.5 μm was the longest. (3) The tool wear of cBN tools decreased with a decrease in chamfer width.


2009 ◽  
Vol 69-70 ◽  
pp. 418-422
Author(s):  
L.D. Wu ◽  
Cheng Yong Wang ◽  
D.H. Yu ◽  
Yue Xian Song

Hardened steel P20 at 50 HRC is milled at high speed by TiN coated and TiAlN coated solid carbide straight end mills, and the cutting forces and tool wear are measured. The result shows that TiAlN coated tool is more suitable for cutting hardened steel at high speed. Then the hardened steel is milled under different cutting parameters. It is indicated that the effect of cutting speed on cutting forces is small, but the effect of cutting speed on machine vibration should be considered. Increase feed per tooth or radial depth of cut will increase the cutting forces.


Sign in / Sign up

Export Citation Format

Share Document