Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites

2016 ◽  
Vol 91 (5-8) ◽  
pp. 1935-1944 ◽  
Author(s):  
L. Zhou ◽  
C. Cui ◽  
P.F. Zhang ◽  
Z.Y. Ma
2014 ◽  
Vol 800-801 ◽  
pp. 290-295
Author(s):  
Chuang Liu ◽  
Shu Tao Huang ◽  
Ke Ru Jiao ◽  
Li Fu Xu

Application prospect of the high volume fraction SiCp/Al composites becomes increasingly widespread, the study of cutting mechanism is important for achieving its high efficient and precision machining. In this paper, a three-dimensional beveled simulation model of high volume fraction SiCp/Al composites on high-speed milling is established by finite element software ABAQUS, the constitutive on model material, the tool-chip contact and the chip separation model is elected reasonably.The paper analyzes the effect of cutting speed on the chip formation and the stress distribution of the material. The results shows that: with the increasing of cutting speed, the chip is easily broken, cutting speed have little impact on the maximum stress of the material.


2021 ◽  
Author(s):  
Peicheng Peng ◽  
Daohui Xiang ◽  
Xiaofei Lei ◽  
Zhanli Shi ◽  
Bo Li ◽  
...  

Abstract Directing at the hard machinability of high volume fraction 70% SiCp/Al composites,a longitudinal and torsional ultrasonic-assisted milling method is proposed to improve the edge quality and machining efficiency. By observing the metallographic structure of the material, the three-dimensional finite element model of SiC particles with spherical, ellipsoidal and random polyhedra is established and analyzed by ABAQUS simulation software. The formation mechanism of edge defects, stress distribution, defect characteristics and the effect of machining parameters on milling force are investigated during ultrasonic-assisted milling. The results show that the edge defects appear at the inlet, outlet and middle edge position, especiallyis more serious at the outlet position. The SiC particles failure modes mainly include particle pullout, particle shearing, crushing, and the edge defects mainly include matrix tearing, edge breakage, burrs, bulgesandpits. In a certain range of ultrasonic amplitude, ultrasonic-assisted milling can effectively reduce the surface fragmentation rate and milling force, slow down the expansion of cracks, increase the plastic flow of material, and obtain better edge quality compared with traditional machining method. By comparing the results of finite element simulation and experimental tests, it shows that the simulation results are in good agreement with the experimental tests.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2010 ◽  
Vol 5 (6) ◽  
pp. 379 ◽  
Author(s):  
Zhiqiang Li ◽  
Lin Jiang ◽  
Genlian Fan ◽  
Yong Xu ◽  
Di Zhang ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 7-11
Author(s):  
Karlina Rahmah ◽  
◽  
Suprihatin Suprihatin ◽  
Pulung Karo Karo ◽  
◽  
...  

This research was conducted to determine the effect of sintering time on the formation of the superconducting phase BSCCO-2212 by calculating the level of purity of the phases formed and looking at the microstructure. The variation of sintering time was 10, 20, 30 and 40 hours using the wet mixing method. The sample was calcinated with 800 °C for 10 hours and sintered with 830 °C. The XRD’s characterization result shows a decrease in phase purity with increasing the sintering time. The relative high volume fraction of the BSCCO-2212/ts10 sample is 90,48% while, the lowest volume fraction of BSCCO-2212/tc40 is 50,74%. The relative high orientation degree of BSCCO-2212/ts20 is 18,47% and the lowest orientation degree of BSCCO-2212/ts10 is 8,4%. The SEM’s characterization result shows of all samples have been oriented and have relatively little space between slabs (voids).


Sign in / Sign up

Export Citation Format

Share Document