A data-driven model for weld bead monitoring during the laser welding assisted by magnetic field

2020 ◽  
Vol 107 (1-2) ◽  
pp. 475-487
Author(s):  
Longchao Cao ◽  
Lili Zhang ◽  
Yuda Wu
2012 ◽  
Vol 44 (7) ◽  
pp. 2020-2025 ◽  
Author(s):  
Yang dongxia ◽  
Li xiaoyan ◽  
He dingyong ◽  
Nie zuoren ◽  
Huang hui

2021 ◽  
Author(s):  
Jens Pomoell ◽  
Emilia Kilpua ◽  
Daniel Price ◽  
Eleanna Asvestari ◽  
Ranadeep Sarkar ◽  
...  

<p>Characterizing the detailed structure of the magnetic field in the active corona is of crucial importance for determining the chain of events from the formation to the destabilisation and subsequent eruption and propagation of coronal structures in the heliosphere. A comprehensive methodology to address these dynamic processes is needed in order to advance our capabilities to predict the properties of coronal mass ejections (CMEs) in interplanetary space and thereby for increasing the accuracy of space weather predictions. A promising toolset to provide the key missing information on the magnetic structure of CMEs are time-dependent data-driven simulations of active region magnetic fields. This methodology permits self-consistent modeling of the evolution of the coronal magnetic field from the emergence of flux to the birth of the eruption and beyond. </p><p>In this presentation, we discuss our modeling efforts in which time-dependent data-driven coronal modeling together with heliospheric physics-based modeling are employed to study and characterize CMEs, in particular their magnetic structure, at various stages in their evolution from the Sun to Earth. </p>


2021 ◽  
Author(s):  
Philippa Browning ◽  
Mykola Gordovskyy ◽  
Satashi Inoue ◽  
Eduard Kontar ◽  
Kanya Kusano ◽  
...  

<p>In this study, we inverstigate the acceleration of electrons and ions at current sheets in the flaring solar corona, and their transport into the heliosphere. We consider both generic solar flare models and specific flaring events with a data-driven approach. The aim is to answer two questions: (a) what fraction of particles accelerated in different flares can escape into the heliosphere?; and (b) what are the characteristics of the particle populations propagating towards the chromosphere and into the heliosphere?</p><p>We use a combination of data-driven 3D magnetohydrodynamics simulations with drift-kinetic particle simulations to model the evolution of the magnetic field and both thermal and non-thermal plasma and to forward-model observable characteristics. Particles are accelerated in current sheets associated with flaring reconnection. When applied to a specific flare, the model successfully predicts observed features such as the location and relative intensity of hard X-ray sources and helioseismic source locations. This confirms the viability of the approach.</p><p>Using these MHD-particle models, we will show how the magnetic field evolution and particle transport processes affect the characteristics of both energetic electrons and ions in the the inner corona and the heliosphere. The implications for interpretation of in situ measurements of energetic particles by Solar Orbiter and Parker Solar Probe will be discussed.</p><p> </p><p> </p>


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3178 ◽  
Author(s):  
Wenbin Wang ◽  
Li Xiong ◽  
Dan Wang ◽  
Qin Ma ◽  
Yan Hu ◽  
...  

A new test method named “Trapezoidal hot” cracking test was developed to evaluate solidification cracking susceptibility of stainless steel during laser welding. The new test method was used to obtain the solidification cracking directly, and the solidification cracking susceptibility could be evaluated by the solidification cracking rate, defined as the ratio of the solidification cracking length to the weld bead length under certain conditions. The results show that with the increase in the solidification cracking rate, the solidification cracking susceptibility of SUS310 stainless steel was much higher than that of SUS316 and SUS304 stainless steels during laser welding (at a welding speed of 1.0 m/min) because a fully austenite structure appeared in the weld joint of the former steel, while the others were ferrite and austenitic mixed structures during solidification. Besides, with an increase in welding speed from 1.0 to 2.0 m/min during laser welding, the solidification cracking susceptibility of SUS310 stainless steel decreased slightly; however, there was a tendency towards an increase in the solidification cracking susceptibility of SUS304 stainless steel due to the decrease in the amount of ferrite under a higher cooling rate.


Solar Physics ◽  
2020 ◽  
Vol 295 (7) ◽  
Author(s):  
Karen A. Meyer ◽  
Duncan H. Mackay ◽  
Dana-Camelia Talpeanu ◽  
Lisa A. Upton ◽  
Matthew J. West

2011 ◽  
Vol 383-390 ◽  
pp. 6225-6230
Author(s):  
K.R. Balasubramanian ◽  
T. Suthakar ◽  
K. Sankaranarayanasamy ◽  
G. Buvanashekaran

Laser beam welding (LBW) is a fusion joining process that uses the energy from a laser beam to melt and subsequently crystallize a metal, resulting in a bond between parts. In this study, finite element method (FEM) is used for predicting the weld bead profile of laser welding butt, lap and T-joints. A three-dimensional finite element model is used to analyze the temperature distribution weld bead shape for different weld configurations produced by the laser welding process. In the model temperature-dependent thermo physical properties of AISI304 stainless steel, effect of latent heat of fusion and convective and radiative boundary conditions are incorporated. The heat input to the FEM model is assumed to be a 3D conical Gaussian heat source. The finite element software SYSWELD is employed to obtain the numerical results. The computed weld bead profiles for butt, lap and T-joints are compared with the experimental profiles and are found to be in agreement.


Sign in / Sign up

Export Citation Format

Share Document