Theoretical study on the effects of the axial and radial runout and tool corner radius on surface roughness in slot micromilling process

2020 ◽  
Vol 108 (5-6) ◽  
pp. 1931-1944
Author(s):  
Tao Wang ◽  
Xiaoyu Wu ◽  
Guoqing Zhang ◽  
Bin Xu ◽  
Yinghua Chen ◽  
...  
Author(s):  
Hirohisa Narita

Abstract An optimum experimental condition, which realize good surface roughness in cross direction both contour and scanning lines, for radius end mill against some inclined surfaces is obtained and some features is these cutting processes is discussed in this paper. The optimum experimental condition, which consists of cutting type (or feed direction), spindle speed, feed rate, depth of immersion, inclination angle, corner radius of end mill and cross feed, is obtained and the influence degree of these parameters is calculated by using Taguchi method. The experiment is carried out based on L18 orthogonal array. Based on the influence degree and geometric contact status due to unique shape of radius end mill, some feature of radius end milling is introduced. As a result of the contour line machining, a scallop height is very influenced by the inclination angle and the corner radius, and surface machined by bottom edge must not be remained. Regarding the scanning line machining, “go-up” is good for the feed direction. Big corner radius is also suitable because side edge does not contact to workpiece. In other words, the cutting force in radial direction becomes small. Furthermore, the surface roughness of the scanning line machining is smaller than the one of the contour line machining.


2017 ◽  
Vol 64 (3) ◽  
pp. 347-357
Author(s):  
Krzysztof Żak

Abstract In this paper, the basic cutting characteristics such as cutting forces, cutting power and its distribution, specific cutting energies were determined taking into account variable tool corner radius ranging from 400 to 1200 µm and constant cutting parameters typical for hard turning of a hardened 41Cr4 alloy steel of 55±1 HRC hardness. Finish turning operations were performed using chamfered CBN tools. Moreover, selected roughness profiles produced for different tool corner radius were compared and appropriate surface roughness parameters were measured. The measured values of Ra and Rz roughness parameters are compared with their theoretical values and relevant material distribution curves and bearing parameters are presented.


2008 ◽  
Vol 375-376 ◽  
pp. 406-410 ◽  
Author(s):  
Zhan Qiang Liu ◽  
Peng Zhang ◽  
Peng Guo ◽  
Xing Ai

Surface roughness in a turning operation is affected by a great number of factors. Two of the most important factors are feed rate and the size of the corner radius. Surface roughness can be roughly determined to increase with the square of the feed rate and decrease with increased size of the corner radius. However, wiper insert geometries changed this relationship with the capability to generate good surface roughness at relatively higher feeds by transferring small part of the round insert edges into the straight cutting edges of the pointed insert. The principle of how wiper inserts behave different from conventional inserts as to the effects on the surface roughness is explored in this paper. Experimental study of the surface roughness produced in the turning of hardened mild steels using coated carbide tools with both conventional and wiper inserts is conducted. The test results prove the effectiveness of the wiper inserts in providing excellent surface roughness. The results also suggest that the use of the wiper insert is an effective way that significantly increases cutting efficiency without changing the machined surface roughness in high feed turning operations.


2015 ◽  
Vol 19 (4) ◽  
Author(s):  
Nguyen Thanh Tien ◽  
Le Tuan ◽  
Doan Nhat Quang

We present a theoretical study of the effect due to spontaneous polarization of ZnO on the low-temperature mobility of the two-dimensional electron gas (2DEG) in a ZnO surface quantum well (SFQW). We proved that for the O-polar face this causes an attraction of electrons by the positive charges bound on the surface, while for the Zn-polar face a repulsion of them far away therefrom by the negative bound charges of the same magnitude. Accordingly, surface roughness scattering is drastically enhanced in the former case, but reduced in the latter one. Therefore, the low-% temperature 2DEG mobility in ZnO SFQWs with O-polar face is found to be dominated by surface roughness. Our theory was illustrated for the sample prepared by bombardment of the O-polar face by 100-eV hydrogen ions. The surface roughness scattering enables an explanation of the 2DEG mobility, especially, the reason of low values for the mobility in the dependence from the carrier density which has not been understood when starting from impurity scattering.


2013 ◽  
Vol 797 ◽  
pp. 166-171
Author(s):  
Bing Wang ◽  
Zhan Qiang Liu ◽  
Lun Chang Su ◽  
Lin Qing Zhang

The paper investigates the effects of cutting conditions on the machinability of stainless steel coatings manufactured onto AISI 1045 steel by laser cladding technology. Two kinds of CBN (cubic boron nitride) tools with different corner radius and two different depths of cut were adopted in the experiments. Cutting force during machining, surface roughness and microhardness of machined surface were measured and analyzed. The results show that both the cutting force and surface roughness increase with the increase of depth of cut. When the other cutting parameters are identical, the surface roughness decreases with the increase of tools corner radius while the variations of different cutting force components present different tendencies. The microhardness of the machined surface and its varied gradient in the direction of depth of cut increase with the increase of tools corner radius. The experiment results will provide valuable suggestions for optimization of cutting performance for laser cladding coatings in order to obtain excellent surface quality.


2011 ◽  
Vol 467-469 ◽  
pp. 656-661
Author(s):  
Chang He Li ◽  
Zhen Lu Han ◽  
Lin Gang Li ◽  
Guo Yu Liu

The characteristic physical properties of titanium alloy materials of the electrical discharge machining (EDM) small hole is studied theoretically and experimentally. From the theory of EDM, based on the phenomenon of microcosmic surface on EDM small hole, the model of surface roughness is built, and the regulation between roughness and pulse width, peak electric current was analyzed, and the roughness empiric formula is developed by use of dyadic linear regression method. Furthermore, by computer simulation technology with established formula the results are derived for other people to public data simulation. After being simulated, the results show that the established model in this paper can accurately forecast the value of processing roughness Ra of commonly used in the processing parameters within the framework, provides a useful complement to titanium alloys for processing the theoretical study and practical application.


1964 ◽  
Vol 86 (3) ◽  
pp. 334-340 ◽  
Author(s):  
M. M. Chen ◽  
W. Rohsenow

The paper presents a combined experimental and theoretical study on the heat, mass, and momentum transfer in a frosted heat exchanger tube. Experimental evidence suggests that the behavior of the frosted tube is largely determined by the surface roughness of the frost layer. Based on simple stability considerations and the well-known rough pipe results of Nikuradse and von Karman, a theory is presented which predicts the frost surface roughness as functions of RePrkkf and the frost thickness. The theoretical results are shown to be in qualitative agreement with observed results. Heat-transfer and pressure drop calculations based on the predicted roughness are also found to be in fair agreement with observed results.


Optik ◽  
2001 ◽  
Vol 112 (4) ◽  
pp. 163-168 ◽  
Author(s):  
C. Joenathan ◽  
R. Torroba ◽  
R. Henao

Sign in / Sign up

Export Citation Format

Share Document