Deformation behaviour and damage evolution of aluminium alloy sheet in electromagnetic forming with uniform pressure actuator

2020 ◽  
Vol 109 (3-4) ◽  
pp. 745-754
Author(s):  
Xiaoyong Zeng ◽  
Zhenghua Meng ◽  
Wei Liu ◽  
Shangyu Huang ◽  
Shoulu Zhou ◽  
...  
2003 ◽  
Vol 110 ◽  
pp. 293-298 ◽  
Author(s):  
D. A. Oliveira ◽  
M. Worswick

2007 ◽  
Vol 561-565 ◽  
pp. 1043-1046 ◽  
Author(s):  
Y. Abe ◽  
T. Kato ◽  
Kenichiro Mori

The aluminium alloy and mild steel sheets were joined with mechanical clinching. Deforming behaviour of the two sheets during the clinching was observed from finite element simulation and an experiment to avoid defects. The fracture of the upper sheet, necking and separation are caused by the small upper sheet thickness in the thick total thickness, the small lower sheet thickness in the thick total thickness and the small lower sheet thickness, respectively. The joining range for the combination of the upper aluminium alloy sheet of and the lower steel sheet of is larger than that of the reverse combination. The effect of the difference between the flow stresses of the two sheets on the deformation behaviour was examined.


2018 ◽  
Vol 765 ◽  
pp. 216-221
Author(s):  
Xi Fan Zou ◽  
Shang Yu Huang ◽  
Wei Liu ◽  
Yu Lei ◽  
Jie Zhu

A numerical simulation study of collision effect on damage evolution in electromagnetic forming (EMF) was presented. EMF technology can greatly improve the forming limit of metal sheet duo to the high rate. However, collision behavior is also an important factor for the formability of sheet. Free form model and conical die model were carried out to study the effect of collision behavior on mechanical properties of Al alloy sheet. The EMF process of 1050 Al alloy sheet was analyzed and discussed by numerical analysis software LS-DYNA. The combined strategy of boundary element method and finite element method was adopted to realize the coupling calculation of electromagnetic field and structural field. Based on the GTN material model, the evolution of void volume fraction of 1050 Al sheet were calculated and analyzed. Comparing the free form model results and the die form model results, showed that the collision behavior could reduce the void volume fraction of sheet, but excessively high collision speed lead to the sheet rebound, which aggravated the damage of material and reduce the accuracy of the product. Therefore, the appropriate discharge voltage in this work was found to improve mechanical property of sheet on the premise of forming precision.


Author(s):  
MK Mohd Nor ◽  
CS Ho ◽  
FNA Janudin

The anisotropic behaviour and the damage evolution of recycled aluminium alloy-reinforced alumina oxide are investigated in this paper using Taylor impact test. The test is performed at various impact velocity ranging from 190 to 360 m/s by firing a cylindrical projectile towards anvil target. The deformation behaviour and the fracture modes are analysed using the digitized footprint of the deformed specimens. The damage initiation and the progression are observed around the impact surface and the surface 0.5 cm from the impact area using the scanning electron microscope. The deformed specimens showed several ductile fracture modes of mushrooming, tensile splitting and petalling. The critical impact velocity is defined below 280 m/s. The specimens showed a strong strain-rate dependency due to the damage evolution that is driven by severe localized plastic-strain deformation. The scanning electron microscope analysis showed the damage mechanism progress via voids initiation, growth and coalescence in the material. The micrograph within the footprint surface shows the presence of alumina oxide particles within the specimen. The microstructure analysis shows a significant refinement of the specimen particle at the surface located 0.5 cm above the impact area. ImageJ software is adopted in this work to measure the average size of voids within this surface. Non-symmetrical (ellipse-shaped) footprint around the footprints showed plastic anisotropic behaviour. The results in this paper provide a better understanding of the deformation behaviour of recycled materials subjected to dynamic loading. This information on mechanical response is crucial before any potential application can be established to substitute the primary sources.


2020 ◽  
Vol 14 (4) ◽  
pp. 7589-7599
Author(s):  
C. S. Ho ◽  
M. K. Mohd Nor ◽  
M. A. Ab Rani ◽  
N. Ma'at ◽  
M. T. Hameed Sultan ◽  
...  

Aluminium alloys have been widely used in many applications, and its usage is increasing yearly due to its distinctive properties. Nevertheless, it required high energy consumption and pollution during the production of primary sources. This leads to the attention in producing secondary sources to substitute the primary aluminium. Recycling of aluminium alloys adopted in automotive structures is a great option to save thousands of energy and prevent tons of CO2 from being released to the atmosphere. Numerous investigations must be conducted to establish the mechanical behaviour before the specific applications can be identified. However, there is a challenge for such recycled aluminium to achieve the same application as the primary sources due to material properties degradation related to damage. It is still an open study area to be explored for a better understanding of the behaviours of recycled aluminium. Thus, in this work, the Taylor Cylinder Impact test is used to investigate anisotropic-damage behaviour of recycled aluminium alloy AA6061 undergoing high-velocity impact from 190m/s to 300 m/s using two length-to-diameter (L/D) ratios. The recovered samples are observed under an optical microscope (OM) and scanning electron microscope (SEM). A strong strain rate dependency can be seen as the damage evolution is increasing as the impact velocity increase. Further, the corresponding digitized footprints analysis exhibit plastic anisotropic and localized plastic strain in such recycled material. This can be clearly observed from the development of a non-symmetrical footprint within the impact surface. This test is the first to explore the deformation behaviour of recycled materials using high-velocity cylinder impact in a high rate of strain deformation regime.


2005 ◽  
Vol 127 (1) ◽  
pp. 145-153 ◽  
Author(s):  
J. M. Imbert ◽  
S. L. Winkler ◽  
M. J. Worswick ◽  
D. A. Oliveira ◽  
S. Golovashchenko

A study of the effect of tool–sheet interaction on damage evolution in electromagnetic forming is presented. Free form and conical die experiments were carried out on 1 mm AA5754 sheet. Safe strains beyond the conventional forming limit diagram (FLD) were observed in a narrow region in the free form experiments, and over a significant region of the part in the conical die experiments. A parametric numerical study was undertaken, that showed that tool–sheet interaction had a significant effect on damage evolution. Metallographic analysis was carried out to quantify damage in the parts and to confirm the numerical results.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 59-72
Author(s):  
Yohei Abe ◽  
Ken-ichiro Mori

AbstractTo increase the usage of high-strength steel and aluminium alloy sheets for lightweight automobile body panels, the joinability of sheet combinations including a 780-MPa high-strength steel and an aluminium alloy A5052 sheets by mechanical clinching and self-pierce riveting was investigated for different tool shapes in an experiment. All the sheet combinations except for the two steel sheets by self-pierce riveting, i.e., the two steel sheets, the two aluminium alloy sheets, and the steel-aluminium alloy sheets, were successfully joined by both the joining methods without the gaps among the rivet and the sheets. Then, to show the durability of the joined sheets, the corrosion behaviour and the joint strength of the aged sheets by a salt spray test were measured. The corrosion and the load reduction of the clinched and the riveted two aluminium alloy sheets were little. The corrosion of the clinched two steel sheets without the galvanized layer progressed, and then the load after 1176 h decreased by 85%. In the clinched two galvanized steel sheets, the corrosion progress slowed down by 24%. In the clinched steel and aluminium alloy sheets, the thickness reduction occurred near the minimum thickness of the upper sheet and in the upper surface on the edge of the lower aluminium alloy sheet, whereas the top surface of the upper sheet and the upper surface of the lower sheet were mainly corroded in the riveted joint. The load reduction was caused by the two thickness reductions, i.e., the reduction in the minimum thickness of the upper sheet and the reduction in the flange of the aluminium alloy sheet. Although the load of the clinched steel without the galvanized coating layer and aluminium alloy sheets decreased by about 20%, the use of the galvanized steel sheet brought the decrease by about 11%. It was found that the use of the galvanized steel sheets is effective for the decrease of strength reduction due to corrosion.


Sign in / Sign up

Export Citation Format

Share Document