Characterization of the cutting forces and friction behavior in machining UD-CFRP using slot milling test

2021 ◽  
Vol 112 (11-12) ◽  
pp. 3471-3483
Author(s):  
Jamal Sheikh-Ahmad ◽  
Fahad Almaskari ◽  
Mohamed El-Hofy
2020 ◽  
Vol 896 ◽  
pp. 270-275
Author(s):  
Stefan Gheorghe ◽  
Cristina Ileana Pascu ◽  
Claudiu Nicolicescu

Titanium sintered alloys have a special use in the technique because they have multiple advantages. Titanium and its alloys are characterized by remarkable physic-chemical, mechanical and technological properties. However, there are several such properties that have a lower value, such as friction behavior. Titanium and its alloys are recognized as having low wear resistance. Titanium alloyed with certain elements, such as tin or graphite, can lead to alloys with improved wear properties, with the specification that graphite does not exceed 1%. The technology of manufacturing titanium-based alloys is specific to powder metallurgy, but it also has some originality by choosing special sintering cycles. The paper aims to present a tribological characterization of the sintered TiAl alloy; the method uses the disc of the alloy that has been researched in contact with an alumina ball. The paper presents a detailed analysis of the wear tests carried out for four types of specimens obtained by different methods.


Author(s):  
Seyed Ali Niknam ◽  
Victor Songmene

The principle objective of this work is to present a methodology to evaluate the correlation between burr size attributes (thickness and height) and information computed from acoustic emission and cutting forces signals. In the proposed methodology, cutting force and acoustic emission signals were recorded in each cutting test, and each recorded original acoustic emission signal was segmented into two sections that correspond to steady-state cutting process (cutting signal) and cutting tool exit from the work part (exit signal). The dominant acoustic emission signal parameters including AEmax and AErms were computed from each segmented acoustic emission signal. The maximum values of directional cutting forces (FX, FY and FZ) were also measured in each trial. The experimental verification was conducted on slot milling operation which has relatively more complicated burr formation mechanism than that in many other traditional machining operations. Among slot milling burrs, the top-up milling side burrs and exit burrs along up milling side were largest and thickest burrs which were studied in this work. To evaluate the correlation between signal information and burr size, the computed signal information (5 parameters) and their interaction effects (10 parameters) were used to construct the input parameters of the multiple regression fitted models. Statistical methods were then used to assess the adequacy of individual input parameters and signal information. Using the acoustic emission and cutting force signals information in the input layer of multiple regression models, a high correlation was observed between the predicted and observed values of burr size. It was exhibited that due to complex burr formation mechanism in milling operation and strong interaction effects between cutting process parameters, no systematic relationship can be formulated between the milling burrs.


2018 ◽  
Vol 53 (8) ◽  
pp. 602-615 ◽  
Author(s):  
Luis Amaral ◽  
Rafael Quinta ◽  
Tiago E Silva ◽  
Rui MB Soares ◽  
Santiago D Castellanos ◽  
...  

The international safety regulations are pushing the manufacturers of water systems and equipment to remove lead from material compositions due to the potential human hazard of lead absorption. The usage of green lead-free brass alloys is becoming mandatory in many important markets, demanding the manufacturers to quickly adapt their production techniques both casting and machining to this new reality. Regarding machining, lead has been used to facilitate the chip control, working as a natural chip breaker and reducing the tool wear. Therefore, the reduction of lead composition in brass alloys contributes to a machinability decrease of the materials leading to higher cutting forces, long chips and higher tool wear. This work focuses on the machinability characterization of three different brass alloys (leaded, medium-leaded and minimally leaded) by means of cylindrical external turning process with polycrystalline diamond inserts. A parametric study covering three different depths of cuts, three feed rates and four cutting speeds was conducted for three brass alloys with two repetitions. Cutting forces, chip morphology and surface roughness were analysed and compared between alloys. Complementary microstructural and mechanical characterization of the alloys were performed. Analysis of variance was performed to analyse the results. Cutting forces, power consumption, specific cutting pressure, roughness and chip morphology identification were used as comparison criteria among the tested materials. Results have demonstrated the decrease of machinability with the lead reduction, with higher cutting forces and longer chips. Polycrystalline diamond tools used in this work could be a good option to overcome the machinability challenges of the lead-free brass alloys.


2019 ◽  
Vol 54 (16) ◽  
pp. 2113-2129
Author(s):  
Miroslav Babic ◽  
Blaza Stojanovic ◽  
Dragan Dzunic ◽  
Marko Pantic

The structural, mechanical and tribological properties of ZA-27/SiC nanocomposites were investigated at micro/nanoscale. The nanocomposites with different volume fractions of nano-sized SiC particles were produced using the compocasting technique. The microstructure of nanocomposites was characterized with formation of SiC nano agglomerates, which were relatively uniformly distributed. The increase in SiC content contributed to the uniformity of their distribution. Also, the phenomenon of particle segregation in the form of particle-rich clusters, as well as particle-porosity clusters, was identified. The density level of composites decreased with the increase of the SiC content. The porosity followed a reverse trend. The tendency for formation of local particle-porosity clusters was the highest in ZA-27/1% SiC nanocomposite, causing the highest level of porosity. Increasing percentage of SiC content was followed by the increase in micro/nanohardness of the composites. The results of micro/nanoscale tribotests revealed that the reinforcing with SiC nanoparticles significantly improved wear and friction behavior of ZA-27 matrix alloy. The rate of improvement increased with the increase of SiC nanoparticle content, load, and sliding speed. The highest degree of changes corresponded to the change of the SiC nanoparticle content from 0 to 1 wt%. The further decrease of wear with SiC content (from 1 to 5 wt%) was almost linear. The different tribological behavior of tested ZA-27 matrix and ZA-27/SiC nanocomposites was influenced by differences of intensity of adhesion resulted in transferred layers of matrix material onto worn surfaces of Al2O3 ball counterpart. The intensity of adhesion significantly decreased with the increase of SiC nanoparticle content.


Procedia CIRP ◽  
2015 ◽  
Vol 31 ◽  
pp. 411-416 ◽  
Author(s):  
N. Sabkhi ◽  
C. Pelaingre ◽  
C. Barlier ◽  
A. Moufki ◽  
M. Nouari

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Sign in / Sign up

Export Citation Format

Share Document