Influence of biodegradable lubricant on the ecology, lubrication, and machining process in minimum quantity lubrication

2021 ◽  
Vol 113 (5-6) ◽  
pp. 1505-1516
Author(s):  
Hongjie Pei ◽  
Fu Li ◽  
Yuying Chen ◽  
Juan Huang ◽  
Chungen Shen
2020 ◽  
Vol 13 ◽  
Author(s):  
Gaurav Gaurav ◽  
Abhay Sharma ◽  
G S Dangayach ◽  
M L Meena

Background: Minimum quantity lubrication (MQL) is one of the most promising machining techniques that can yield a reduction in consumption of cutting fluid more than 90 % while ensuring the surface quality and tool life. The significance of the MQL in machining makes it imperative to consolidate and analyse the current direction and status of research in MQL. Objective: This study aims to assess global research publication trends and hot topics in the field of MQL among machining process. The bibliometric and descriptive analysis are the tools that the investigation aims to use for the data analysis of related literature collected from Scopus databases. Methods: Various performance parameters are extracted, such as document types and languages of publication, annual scientific production, total documents, total citations, and citations per article. The top 20 of the most relevant and productive sources, authors, affiliations, countries, word cloud, and word dynamics are assessed. The graphical visualisation of the bibliometric data is presented in terms of bibliographic coupling, citation, and co-citation network. Results: The investigation reveals that the International Journal of Machine Tools and Manufacture (2611 citations, 31 hindex) is the most productive journal that publishes on MQL. The most productive institution is the University of Michigan (32 publications), the most cited country is Germany (1879 citations), and the most productive country in MQL is China (124 publications). The study shows that ‘Cryogenic Machining’, ‘Sustainable Machining’, ‘Sustainability’, ‘Nanofluid’ and ‘Titanium alloy’ are the most recent keywords and indications of the hot topics and future research directions in the MQL field. Conclusion: The analysis finds that MQL is progressing in publications and the emerging with issues that are strongly associated with the research. This study is expected to help the researchers to find the most current research areas through the author’s keywords and future research directions in MQL and thereby expand their research interests.


2020 ◽  
Vol 997 ◽  
pp. 85-92
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
Abdullah Yassin ◽  
Shahrol Mohamaddan ◽  
Syaiful Anwar Rajaie ◽  
Muhammad Isyraf Mazlan ◽  
...  

One of the most significant factors in machining process or metal cutting is the cutting tool performance. The rapid wear rate of cutting tools and cutting forces expend due to high cutting temperature is a critical problem to be solved in high-speed machining process, milling. Near-dry machining such as minimum quantity lubrication (MQL) is regarded as one of the solutions to solve this problem. However, the function of MQL in milling process is still uncertain so far which prevents MQL from widely being utilized in this specific machining process. In this paper, the mechanism of cutting tool performance such as tool wear and cutting forces in MQL assisted milling is investigated more comprehensively and the results are compared in three different cutting conditions which is dry cutting, wet cutting (flooding) and MQL. The MQL applicator is constructed from a household grade low-cost 3D printing technique. The chips surface of chips formation in each cutting condition is also observed using Scanning Electron Microscopy (SEM) machine. It is found out that wet cutting (flooding) is the best cutting performance compare to MQL and dry cutting. However, it can also be said that wet cutting and MQL produced almost the same value of tool wear and cutting forces as there is negligible differences in average tool wear and cutting forces between them based on the experiment conducted.


Author(s):  
Trung Kien Nguyen ◽  
Kyung-Hee Park ◽  
Patrick Y. Kwon

This paper studies the effect of various lamellar-type solid lubricants (graphite and hBN) that can be mixed into a lubricant to potentially improve the machinability of minimum quantity lubrication (MQL) machining. To examine this, the solid lubricants are classified into particles and platelets based on their aspect ratios as well as their respective sizes. In particular, the particles are classified into microparticles and nanoparticles based on their dimensions (average radius), while the platelets were classified, based on their average thickness, into two types: the “microplatelets” if the thickness is typically up to few tens of microns and the “nanoplatelets” if the thickness is well below a tenth of a micron (even down to few nanometers). Our previous work has shown that the mixture of an extremely small amount (about 0.1 wt. %) of the graphitic nanoplatelets and vegetable oil immensely enhanced the machinability of MQL machining. In this paper, many lubricants, each mixed with a particular variety of nano- or micro-platelets or one type of nanoparticles, were studied to reveal the effect of each solid lubricant on MQL machining. Prior to the MQL machining experiment, the tribological test was conducted to show that the nanoplatelets are overall more effective than the microplatelets and nanoparticles in minimizing wear despite of no significant difference in friction compared to pure vegetable oil. Consequently, the MQL ball-milling experiment was conducted with AISI 1045 steel yielding a similar trend. Surprisingly, the oil mixtures with the microplatelets increased flank wear, even compared to the pure oil lubricant when the tools with the smooth surface were used. Thus, the nanoscale thickness of these platelets is a critical requirement for the solid lubricants in enhancing the MQL machining process. However, maintaining the nanoscale thickness is not critical with the tools with the rough surfaces in enhancing the MQL process. Therefore, it is concluded that finding an optimum solid lubricant depends on not only the characteristics (material as well as morphology) of solid lubricants but also the characteristic of tool surface.


Author(s):  
Menghua Sui ◽  
Changhe Li ◽  
Wentao Wu ◽  
Min Yang ◽  
Hafiz Muhammad Ali ◽  
...  

Abstract Nanofluid minimum quantity lubrication (NMQL) has better stability, higher thermal conductivity, and excellent lubrication performance compared with traditional flood lubrication. The heat transfer model and finite difference model were established to verify the feasibility of NMQL conditions in grinding cemented carbide. Based on them, the grinding temperature of cemented carbide is calculated numerically. Results show that the grinding zone temperatures of flood grinding and NMQL are lower, 85.9 °C and 143.2 °C, respectively. Surface grinding experiments of cemented carbide YG8 under different working conditions are carried out. Dry grinding (227.2 °C) is used as the control group. Grinding zone temperatures of flood grinding, minimum quantity lubrication, and NMQL decrease by 64.2%, 39.5%, and 20.4% respectively. The error is 6.3% between theoretical calculation temperature and experimental measurement temperature. Based on machining process parameters (specific grinding force, force ratio) and experimental results (microstructure of grinding wheel, workpiece, and grinding debris), the effects of different working conditions on wheel wear are studied. NMQL achieves the highest G ratio of 6.45, the smallest specific grinding force, and the smallest Fn/Ft ratio of 2.84, which further proves that NMQL is suitable for grinding cemented carbide.


In any manufacturing industry cost and productivity are the major concerns to be taken care. There are several factors which can be used to control these factors and while it comes to machining tool wear plays a major role in deciding the productivity and cost of the machining process. Recently many studies have been done on the different alloys of titanium and it is found to be very useful and difficult to machine material as well. In this work turning of one of the titanium alloys is used to study the tool wear behavior during dry and minimum quantity lubrication (MQL) machining conditions. In the current work tungsten carbide (WC) insert is used for machining process. After the machining Taguchi’s analysis is used to analyze the results obtained after the machining. In this work spindle speed, feed, and depth of cut are taken as the input parameters along with the machining condition. From the results it is found that MQL provides the better results to minimize the tool wear


Author(s):  
Ibrahim Nouzil ◽  
Abdelkrem Eltaggaz ◽  
Ibrahim Deiab ◽  
Salman Pervaiz

Abstract Minimum quantity lubrication (MQL) with nanocomposite particles is among the new areas of study and has proven to provide very good cooling and lubrication in the machining of difficult to cut materials, such as titanium, Inconel and ADI. It is therefore imperative to understand their effects on the environment in the early stages of investigation, prior to their wide scale usage in industry. This study focuses on the different nanocomposite particles used in previous research, which is available in the literature, and evaluates their sustainability characteristics by investigating the toxicity of these nanocomposite particles on humans. The cooling capabilities of each of the nanoparticles considered is first established from the existing literature and summarized. Human cell viability measured from in vitro toxicity studies of nanoparticles is used as a variable to easily capture the toxicity of nanoparticles. Six different human cell lines were chosen to represent the effects of possible exposure through inhalation [human lung epithelial cells (A549), and bronchial epithelial cells (NL-20)], ingestion (AGS, and HepG2) and dermal contact (THP-1, and human peripheral blood cells). A comparison table was developed (Table 2.0), which provides easy interpretation of the toxicity levels of the five nanoparticles that were considered using all three human cell lines. The drawback of this comparison is the lack of sufficient data to assign conclusive toxicity levels to the nanoparticles. The toxicity studies of nanoparticles on humans is still in its infancy and contradictory results exist for some of the nanoparticles. This is the first attempt to combine the results of the experimental investigations of nano-MQL cooling and the toxicity studies of nanoparticles, allowing researchers to make informed decisions in the selection of the most sustainable nanoparticles in the nano-MQL machining process.


Author(s):  
L. Mamundi Azaath ◽  
U. Natarajan

Abstract In recent years, minimum quantity lubrication machining has played a critical role in extending tool life, improving surface finish, and reducing tool wear during the machining of hardened steel. The reported investigation involved the utility of Hardox 500 steel for the machining process while the cubic boron nitride coated tool performed the function of removing the material. The investigation was carried out by adopting two different techniques to predict the responses, viz., the response surface methodology and the artificial neural network. These techniques have been employed to predict the possible responses in investigating machining characteristics. Also, due consideration has been made concerning the reduction of tool-tip temperature and surface roughness. The entire investigation was carried out using three different environments. They are dry machining, wet, and minimum quantity lubrication. A scanning electron microscope was used for examining the morphology of the worn tool surface.


2012 ◽  
Vol 217-219 ◽  
pp. 2012-2015 ◽  
Author(s):  
Ha Salaam ◽  
Zahari Taha ◽  
Tuan Muhammad Yusoff Shah Tuan Ya

Ranque-Hilsch Vortex Tube (RHVT) is a device with no moving parts and do not require electricity or chemicals to function. It has been used widely in cooling and heating of various operations, thermal test, dehumidification, gas liquefaction, ice production and mixture separation. Sustainable machining refers to the efforts to reduce the environmental impact of machining. The use of minimum quantity lubrication (MQL) is an effective solution for a more sustainable machining process. In this paper we propose the use of RHVT in MQL. The structure, working principles and types of RHVT are presented in this paper. Parameters associated with RHVT and the various possible working fluids are discussed in brief.


Minimum quantity lubrication (MQL) is currently a widely used lubricating technique during machining, in which minimum amount of lubricant in the form of mist is delivered to the machining interface, thus helps to reduce the negative effects caused to the environment and human health. Further, to enhance the productivity of machining process specifically for hard-to-cut materials, nano cutting fluid (suitably mixed nano materials with conventional cutting fluid) is used as an alternative method to conventional lubrication (wet) in MQL. In the current paper, h-BN nano cutting fluid was formulated with 0.1% vol. concentration of h-BN in conventional cutting fluid for NF-MQL technique and its tribological effects on machining performance of Inconel 625 were compared with other lubricating conditions (dry, wet, MQL conventional). The tribological effects were analyzed in terms of tool wear analysis, chip morphology along with statistical analysis for surface roughness and cutting forces. The optimal input machining parameters for experiments were defined by the use of Taguchi and Grey relational based multi response optimization technique. The tribological effects of h-BN NF-MQL shows that it is a viable and sustainable option for improving the machining performance of hard- to- cut material like Inconel 625


Sign in / Sign up

Export Citation Format

Share Document