Improving the quality of hole processing in welded products made of dissimilar materials with a new boring tool

Author(s):  
Viaсheslav Maksarov ◽  
Aleksandr Efimov ◽  
Jüri Olt
2016 ◽  
Vol 719 ◽  
pp. 142-148 ◽  
Author(s):  
Rattana Borrisutthekul ◽  
Anchalee Saengsai ◽  
Pusit Mitsomwang

Nowadays, dissimilar materials welding, especially between metal to plastics, has been become the hottest issue. The objective of the study is to investigate the effects of physical properties of plastics on the weldability and the quality of the dissimilar materials welding between SUS304 stainless steel and plastics. In experiment, the lap joint configuration with SUS304 put on the top was applied. The welding speed, focal position, and keeping period of weld after welding were varied. The results indicated that the decomposition temperature of plastics affected both weldability and quality of joint after welding. Moreover, crazing was a prominent property to be considered for long-term use of the dissimilar materials welding as the specimen could fracture by itself after a period of time without any application of the external load.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 448 ◽  
Author(s):  
J. Fernández-Pérez ◽  
J. Cantero ◽  
J. Díaz-Álvarez ◽  
M. Miguélez

Hybrid stack drilling is a very common operation used in the assembly of high-added-value components, which combines the use of composite materials and metallic alloys. This process entails the complexity of machining very dissimilar materials, simultaneously, on account of the interactions that are produced between them, during machining. This study analyzed the influence of Minimum Quantity Lubrication (MQL) on the performance of diamond-coated carbide tools when drilling Ti/carbon fiber reinforced plastics (CFRP)/Ti stacks. The main wear mechanism observed was diamond-coating detachment, followed by fragile breaks in the main cutting-edge. The tests done with the lower lubrication levels have shown an important adhesion of titanium (mainly on the secondary cutting-edge) and a higher friction between the tool and the workpiece, producing higher temperatures on the cutting region and a thermal softening effect on the workpiece. These phenomena affect the evolution of cutting power consumption with tool wear in the titanium layer. Regarding the quality of the test specimen, no significant differences were observed between the lubrication levels tested.


2012 ◽  
Vol 445 ◽  
pp. 406-411 ◽  
Author(s):  
R. Safdarian Korouyeh ◽  
Hassan Moslemi Naeini ◽  
M.J. Torkamany ◽  
J. Sabaghzadee

Tailor Welded Blanks (TWB) are blanks in which two or more sheets of similar or dissimilar materials, thicknesses, coatings etc. are welded together to form a single sheet before forming. Forming behavior of TWBs is affected by thickness ratio, strength ratio, weld conditions such as weld properties, weld orientation, weld location etc. In this work, Nd:YAG laser welding will be use to weld TWB with different thickness in experimental test. Nd:YAG laser welding parameters such as pulse duration, welding velocity, frequency and peak power will affect formability of TWBs. Taguchis design of experiments methodology is followed to design of experiment and obtain the percentage contribution of factors considered. Erichsen formability test and uniaxial tensile test (ASTM-E8) will be use in experiment setup to compare result of different welding parameters on formability quality of TWBs.


2016 ◽  
Vol 15 (01) ◽  
pp. 13-25 ◽  
Author(s):  
E. Mohan ◽  
U. Natarajan

In the manufacturing industry, most of the components are made by machining operations. The performance of the product to a large extent is dependent on the accuracy and consistency of the machining processes. Various parameters are considered to achieve the high quality of the machining. Out of which, vibration is one of the important parameters that will lead poor quality of the product and also reduce the tool life. Vibrations are induced by metal cutting operation during machining. Turning operations and especially boring operations are associated with severe vibration-related problems. Boring operation is often done with a boring bar, which is necessarily long and slender so that it can fit into the multipart work piece geometry. Such tools are lack of dynamic stiffness and stability, this manufacturing operation is repeatedly plagued with self-excited vibrations known as chatter. Magnetorheological (MR) fluid is employed in this research work to control the vibration of a boring tool. The MR fluid damper has received great attention due to its ability to reversibly change from a free flowing, linear, viscous liquid to a semi-solid when exposed to magnetic fields in just a few milliseconds and was also found to be effective in suppressing tool vibration. Vibration control during machining process is an important tactic to suppress the chatter vibration. The aim of this approach is to reduce the relative displacements between the tool and the work piece during the machining process.


2020 ◽  
Vol 92 (6) ◽  
pp. 23-34
Author(s):  
Robert Siedlec ◽  
Cezary Strąk

Friction welding is one of the most economical process for solid-state joining materials. This technique allows to weld similar and dissimilar materials in a very short time. Friction welding of metal with composites gives new possibilities of application, due to the fact that materials have different physical and mechanical properties. In the study, aluminum alloy 44200 was friction welded to Al/Al2O3 composite. In addition, the following exam were used: optical microscopy, microhardness measurements and also tensile strength for all joints produced by friction welding. All of studies were performed to evaluate the quality of bonding aluminum alloy with metal matrix composite reinforced ceramic phase of Al/Al2O3.


2015 ◽  
Vol 1115 ◽  
pp. 109-112 ◽  
Author(s):  
M. Eshteyah ◽  
Meftah Hrairi ◽  
M.S. Dawood ◽  
A.K.M. Mohiuddin

Clinching is one of the important new joining techniques, in which two plate metal parts are locally plastically deformed by mechanical interlock. Clinching is a mechanical joining method by using simple tools that consist of a punch, a die, and a blank-holder. The shapes of these tools are the most important parameters that control the final geometry of the clinch joints which in turn strongly affect the strength and quality of the final joint. In this study, finite element simulations are carried out to investigate some of the difficulties regarding the optimization of the process parameters, and major expected geometric parameters that will influence the strength, joinability, and the quality of the joint.


2010 ◽  
Vol 638-642 ◽  
pp. 3661-3666 ◽  
Author(s):  
Xin Jin Cao ◽  
Mohammad Jahazi

As a relatively new solid-state joining process, friction stir welding (FSW) may provide a feasible approach to join dissimilar materials such as Mg to Al alloys. In this work, the effects of selected process parameters including work-piece placement, pin tilting angle, and pin location on the quality of dissimilar AA 2024-T3 to AZ31B-H24 butt joints were investigated for the first time. Sound butt joints with low distortion and no solidification cavities or cracks were successfully obtained indicating the potential of FSW to join dissimilar Al to Mg alloys.


10.14311/1548 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
Ladislav Kolařík ◽  
Miroslav Sahul ◽  
Marie Kolaříková ◽  
Martin Sahul ◽  
Milan Turňa ◽  
...  

This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA). Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.


2019 ◽  
Vol 969 ◽  
pp. 558-564 ◽  
Author(s):  
M. Anuradha ◽  
Vemulapalli Chittaranjan Das ◽  
D. Venkateswarlu ◽  
Muralimohan Cheepu

Dissimilar joining of high strength tensile steels are joined using laser beam welding. The selection of the welding conditions for joining of dissimilar materials is highly required to satisfy the quality of the joints. In the present investigation, optimization technique were used to determine the optimal welding conditions. Initially welding conditions were optimized for weld geometry and formation of different zones in the weldment. The metallurgical and mechanical properties of the welds are greatly influenced by the geometry of the welds. The surface response methodology design is carried out for the experimental design by the development of regression equations. Analysis of variance (ANOVA) was used to check the validity of the model. The output of the welding conditions were compared with the predicted values to identify the accuracy of the model. The obtained results from response surface methodology were compared with the experimental results and validated.


Sign in / Sign up

Export Citation Format

Share Document