scholarly journals Novel drawing system approach to manufacture performant commercially pure aluminium fine wires

Author(s):  
Serafino Caruso ◽  
Giuseppina Ambrogio

AbstractDue to its electro-mechanical properties, commercially pure aluminium wires have attracted the interest of automotive industry representing a functional and efficient economic solution to reduce vehicle’s weight leading to the diminishing of energy consumption and emissions in today’s society. However, to consolidate its use in this sector and in new market realities, it is necessary to increase the flexibility of the aluminium conductor wires, consenting their installation in very small spaces and with high curvatures, avoiding any failure and electrical conductivity decrease. Thus, the evolution of microstructure and service performance needs to be investigated and controlled to improve the service safety. The present research shows a new approach to continuously manufacture efficient long wires with smaller diameters and fine grains at room temperature. It is studied the strengthening effects (yield and tensile strength, plasticity, hardness), the electrical conductivity, and the microstructural changes of commercial 1370 pure aluminium (99.7% Al) when traditional wire drawing process is combined with equal channel angular drawing (ECAD) technique. The results of this proposed procedure of deformation “drawing-ECAD-drawing” show an evident benefit, compared to the classic technology of production of aluminium wire, obtaining fine grain structure product with superior mechanical strength and not influenced electrical conductivity. The proposed manufacturing approach leads to fine wires enhancing the material mechanical properties by microstructural evolution (i.e. grain size reduction) avoiding the traditional post manufacturing thermal treatments requiring a high amount of energy and time and careful steps.

2021 ◽  
Author(s):  
Serafino Caruso ◽  
Giuseppina Ambrogio

Abstract Due to its electro-mechanical properties, commercially pure aluminium wires have attracted the interest of automotive industry representing a functional and efficient economic solution to reduce vehicle’s weight leading to the diminishing of energy consumption and emissions in today’s society. However, to consolidate its use in this sector and in new market realities, it is necessary to increase the flexibility of the aluminium conductor wires, consenting their installation in very small spaces and with high curvatures, avoiding any failure and electrical conductivity decrease. Thus, the evolution of microstructure and service performance need to be investigated and controlled to improve the service safety. The present research shows a new approach to efficiently continuously manufacture long wires with smaller diameters and fine grains at room temperature. It is studied the strengthening effects (yield and tensile strength, plasticity, hardness), the electrical conductivity and the microstructural changes of commercial 1370 pure aluminium (99.7% Al) when traditional wire drawing process is combined with equal channel angular drawing (ECAD) technique. The results of this proposed procedure of deformation “drawing-ECAD-drawing” show an evident benefit, compared to the classic technology of production of aluminium wire, obtaining fine grain structure product with superior mechanical strength and not influenced electrical conductivity. The proposed manufacturing approach leads to fine wires enhancing the material mechanical properties by microstructural evolution (i.e. grain size reduction) avoiding the traditional post manufacturing thermal treatments requiring a high amount of energy and time and careful steps.


2013 ◽  
Vol 765 ◽  
pp. 511-515 ◽  
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fu Bao Yang ◽  
You Feng He ◽  
Fan Zhang ◽  
...  

The evolution of microstructure and mechanical properties during solution and ageing heat treatment process was studied in terms of a thixo-diecast impeller of 319s aluminium alloy. The cast alloy exhibited a microstructure consisting of primary uniformly distributed in α-Al globules and the eutectics. A series of heat treatment studies were performed to determine optimum heat treatment parameters, in order to achieve fine grain structure, fine silicon particles and optimal precipitate size and distribution. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the evolution of microstructure and mechanical properties. The results demonstrate that, the full T6 heat treatments are successfully applied to thixo-diecast 319s impellers. A two-step solution heat treatment is employed to prevent porosity due to overheating. The tensile properties of thixo-diecast 319s impellers were substantially enhanced after T6 heat treatment. The plate-shaped θ′ precipitates and lath-shaped Q′ precipitates are the most effective for precipitation strengthening.


2013 ◽  
Vol 13 (3) ◽  
pp. 68-71
Author(s):  
J. Piątkowski ◽  
M. Jabłońska

Abstract The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10) on the resultingmechanical (HB, Rm, R0.2) and plastic (A5 and Z) properties. It has been shown that, so-called, "timethermal treatment" (TTT) of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al) solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe) provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C).


Author(s):  
Kadephi V. Mjali ◽  
Annelize Els-Botes ◽  
Peter M. Mashinini

This paper illustrates the effects of the laser and mechanical forming on the hardness and microstructural distribution in commercially pure grade 2 Titanium alloy plates. The two processes were used to bend commercially pure grade 2 Titanium alloy plates to a similar radius also investigate if the laser forming process could replace the mechanical forming process in the future. The results from both processes are discussed in relation to the mechanical properties of the material. Observations from hardness testing indicate that the laser forming process results in increased hardness in all the samples evaluated, and on the other hand, the mechanical forming process did not influence hardness on the samples evaluated. There was no change in microstructure as a result of the mechanical forming process while the laser forming process had a major influence on the overall microstructure in samples evaluated. The size of the grains became larger with increases in thermal gradient and heat flux, causing changes to the overall mechanical properties of the material. The thermal heat generated has a profound influence on the grain structure and the hardness of Titanium. It is evident that the higher the thermal energy the higher is the hardness, but this only applies up to a power of 2.5kW. Afterwards, there is a reduction in hardness and an increase in grain size. The cooling rate of the plates has been proved to play a significant role in the resulting microstructure of Titanium alloys. The scanning speed plays a role in maintaining the surface temperatures of laser formed Titanium plates resulting in changes to both hardness and the microstructure. An increase in heat results in grain growth affecting the hardness of Titanium.


2011 ◽  
Vol 690 ◽  
pp. 49-52 ◽  
Author(s):  
Magdalena Nowak ◽  
Nadendla Hari Babu

A novel effective grain refiner for hypo and hyper-eutectic Aluminium-Silicon alloys has been developed. The composition of the grain refiner has been optimized to produce a fine grain structure and finer eutectic. Effectiveness of grain size under various cooling conditions has also been investigated to simulate various practical casting conditions. For comparative purposes, a wide range of Al alloys have been produced with the addition of commercially available Al-5Ti-B master alloys. The results show that the addition of novel grain refiner reduces the grain size significantly. As a result of fine grains, the porosity in the solidified alloys is remarkably lower. A notable improvement in mechanical properties has also been observed.


2013 ◽  
Vol 562 ◽  
pp. 128-136 ◽  
Author(s):  
D.V. Gunderov ◽  
A.V. Polyakov ◽  
I.P. Semenova ◽  
G.I. Raab ◽  
A.A. Churakova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document