Novel Grain Refiner for Hypo- and Hyper-Eutectic Al-Si Alloys

2011 ◽  
Vol 690 ◽  
pp. 49-52 ◽  
Author(s):  
Magdalena Nowak ◽  
Nadendla Hari Babu

A novel effective grain refiner for hypo and hyper-eutectic Aluminium-Silicon alloys has been developed. The composition of the grain refiner has been optimized to produce a fine grain structure and finer eutectic. Effectiveness of grain size under various cooling conditions has also been investigated to simulate various practical casting conditions. For comparative purposes, a wide range of Al alloys have been produced with the addition of commercially available Al-5Ti-B master alloys. The results show that the addition of novel grain refiner reduces the grain size significantly. As a result of fine grains, the porosity in the solidified alloys is remarkably lower. A notable improvement in mechanical properties has also been observed.

2019 ◽  
Vol 969 ◽  
pp. 794-799 ◽  
Author(s):  
Satya Prema ◽  
T.M. Chandrashekharaiah ◽  
P. Farida Begum

Grain refinement is one of the most important and popular melt treatment process for Al-Si alloy casting. Microstructure and mechanical properties of commercially available Aluminium Silicon alloy LM6 can be improved with the addition of grain refiners and modifiers as these provide technical and economic advantages. This paper is an effort to study the effects of addition of grain refiners and modifiers to the eutectic Al – Si alloy LM6. Commercially available Al - Si alloy LM6 (eutectic = 12% Si) is grain refined with Al-5Ti-1B and Al-3B; and modified with Al-10Sr master alloys. These were added individually and then tested for its unique mechanical properties such as ultimate tensile strength, hardness and wear; which are co-related with the machining tests such as turning, surface roughness and drilling. The test results are compared with microstructure of the samples observed through SEM.The mechanical properties of this alloy can be altered after addition of master alloys, which in turn alter the grain size. Thus the results conclude that the mechanical properties of Al-Si alloys in general are controlled by a number of principal microstructural features. A fine grain size is desirable, leading to improvement of mechanical properties.


Author(s):  
R. S. Syryamkin ◽  
Yu. A. Gorbunov ◽  
S. B. Sidelnikov ◽  
A. Yu. Otmahova

The analysis of scientific and technical literature and practical data made it possible to found that changes in casting parameters for ingots using different mold designs allows varying the degree of ingot grain structure refinement in a sufficiently wide range, which should be reflected in the conditions of aluminum alloy profile extrusion as well as physical and mechanical properties of these profiles. Therefore, the purpose of the research was to assess the influence of the degree of grain structure refinement for Alloy 6063 ingots on extrusion deformation and speed parameters and mechanical properties of profiles produced. The study used several batches of Alloy 6063 ingots 178 mm in diameter cast under industrial conditions, as well as profiles obtained by direct extrusion on a 18 MN horizontal hydraulic press subjected to quenching and aging. The grain size in homogenized ingots was estimated by light microscopy using the Olimpus optical microscope, and mechanical properties tests were carried out using the Inspect 20 kN-1 universal test machine. It was found that the initial grain size in the ingot structure exerts a significant influence both on ingot plasticity during extrusion, and on the final structure and mechanical properties of profile products made of aluminum alloys. Having analyzed the results obtained, we can conclude that the increase in strength characteristics of products extruded from ingots with a more refined structure is due to the fact that fine grains are retained in the structure of metal after its deformation, and cast metal plasticity increases with the degree of grain structure refinement in the ingot. This leads to the higher efficiency of profile product hardening and metal outflow rate during extrusion.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


2016 ◽  
Vol 685 ◽  
pp. 487-491 ◽  
Author(s):  
Mikhail Chukin ◽  
Marina Polyakova ◽  
Alexandr Gulin ◽  
Olga Nikitenko

It is shown that combination of strain effects leads to possessing the ultra-fine grain structure in carbon wire. The continuous method of wire deformation nanostructuring was developed on the basis of simultaneous applying of tension deformation by drawing, bending deformation when going through the system of rolls and torsional deformation on a continuously moving wire. One of the main advantages of the developed method is that various hardware devices and tools already applied for steel wire production can be used to implement this method thus simplifying its introduction to the current industrial equipment. The efficiency estimation of the developed continuous method of deformation nanostructuring was carried out using carbon wire with different carbon content. It is shown that the mechanical properties of the wire after combination of different kinds of strain can vary over a wide range. This method makes it possible to choose such modes of strain effect, which can provide the necessary combination of strength and ductile properties of carbon wire depending on its further processing modes and application.


Author(s):  
Mark Easton ◽  
David St John ◽  
Prasad Arvind

Grain refinement is a critical technology for the successful production of cast parts; whether that be preforms such as extrusion billet or rolling slab, or near net-shape castings. A refined microstructure has many advantages with reduced defects and improved mechanical properties. This article describes the approaches to the prediction of grain size in Al-alloys refined by Al-Ti-B master alloys. Included are empirical approaches based on the generation and analysis of grain size data, the development of analytical equations, and the use of finite element approaches to the prediction of grain sizes. It is clear that researchers have a good ability to predict grain size of Al-alloys grain refined by Al-Ti-B master alloys, although there are still some outstanding challenges, particularly in considering more extreme solidification conditions and poisoning of the master alloys.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ehab A. El-Danaf ◽  
Mahmoud S. Soliman ◽  
Ayman A. Al-Mutlaq

The effect of grain size and stacking fault energy (SFE) on the strain hardening rate behavior under plane strain compression (PSC) is investigated for pure Cu and binary Cu-Al alloys containing 1, 2, 4.7, and 7 wt. % Al. The alloys studied have a wide range of SFE from a low SFE of 4.5 mJm−2for Cu-7Al to a medium SFE of 78 mJm−2for pure Cu. A series of PSC tests have been conducted on these alloys for three average grain sizes of ~15, 70, and 250 μm. Strain hardening rate curves were obtained and a criterion relating twinning stress to grain size is established. It is concluded that the stress required for twinning initiation decreases with increasing grain size. Low values of SFE have an indirect influence on twinning stress by increasing the strain hardening rate which is reflected in building up the critical dislocation density needed to initiate mechanical twinning. A study on the effect of grain size on the intensity of the brass texture component for the low SFE alloys has revealed the reduction of the orientation density of that component with increasing grain size.


2016 ◽  
Vol 849 ◽  
pp. 549-556
Author(s):  
Pin Pin Hu ◽  
Qi Dong Gai ◽  
Qing Li ◽  
Xin Tang

The effect of Microcast-X fine grain casting on the microstructure and mechnical property K492M alloy at 760°C of was investigated. The results indicated that Microcast-X fine grain casting decreased grain size and dendrite space of γ′ phase and γ/γ′ eutectic. In addition, the element segregation decreased significantly compared to conventional casting technique. Also, the size and distribution of MC carbide were improved. By Microcast-X fine grain casting, the tensile strength increased from 934MPa of conventional casting alloy to 1089MPa and the elongation increased from 1.9% to 5.7%. In addition, the stress-rupture life increased from 28.8h of conventional casting alloy to 72.5h. And the fracture mechanism for the alloys by Microcast-X fine grain casting is trans-granular fracture toughness.


2004 ◽  
pp. 39-46

Abstract In castings, microstructural features are products of metal chemistry and solidification conditions. The microstructural features, excluding defects, that most strongly affect the mechanical properties or aluminum castings are size, form, and distribution of intermetallic phases; dendrite arm spacing; grain size and shape; and eutectic modification and primary phase refinement. This chapter discusses the effects of these microstructural features on properties and methods for controlling them. The chapter concludes with a detailed examination of the refinement of hypereutectic aluminum-silicon alloys.


Sign in / Sign up

Export Citation Format

Share Document