scholarly journals Enhancement of multilayer perceptron model training accuracy through the optimization of hyperparameters: a case study of the quality prediction of injection-molded parts

Author(s):  
Kun-Cheng Ke ◽  
Ming-Shyan Huang
2021 ◽  
Author(s):  
Kun-Cheng Ke ◽  
Ming-Shyan Huang

Abstract Injection molding has been broadly used in the mass production of plastic parts and must meet the requirements of efficiency and quality consistency. Machine learning can effectively predict the quality of injection molded part. However, the performance of machine learning models largely depends on the accuracy of the training. Hyperparameters such as activation functions, momentum, and learning rate are crucial to the accuracy and efficiency of model training. This research further analyzed the influence of hyperparameters on testing accuracy, explored the corresponding optimal learning rate, and provided the optimal training model for predicting the quality of injection molded parts. In this study, stochastic gradient descent (SGD) and stochastic gradient descent with momentum were used to optimize the artificial neural network model. Through optimization of these training model hyperparameters, the width testing accuracy of the injection product improved. The experimental results indicated that in the absence of momentum effects, all five activation functions can achieve more than 90% of the training accuracy with a learning rate of 0.1. Moreover, when optimized with the SGD, the learning rate of the Sigmoid activation function was 0.1, and the testing accuracy reached 95.8%. Although momentum had the least influence on accuracy, it affected the convergence speed of the Sigmoid function, which reduced the number of required learning iterations (82.4% reduction rate). Optimizing hyperparameter settings can improve the accuracy of model testing and markedly reduce training time.


2014 ◽  
Vol 998-999 ◽  
pp. 534-537 ◽  
Author(s):  
Chun Neng Wang ◽  
Xi Ying Fan

Injection molding is a very complex multi-factor coupling effect and a nonlinear dynamic process. Therefore, under the influence of nonlinear and multi-factor, injection molding goal is to effectively predict and guarantee the quality of injection molded parts. In this paper, the common methods used to predict the quality of injection molded parts are introduced, including: Taguchi method, artificial neural network, response surface method, radial basis function method and Kriging model method. Research progresses as well as application examples of forecasting methods at home and abroad is summarized. Besides, the development trend of the injection molding quality prediction is discussed.


2006 ◽  
Vol 326-328 ◽  
pp. 187-190
Author(s):  
Jong Sun Kim ◽  
Chul Jin Hwang ◽  
Kyung Hwan Yoon

Recently, injection molded plastic optical products are widely used in many fields, because injection molding process has advantages of low cost and high productivity. However, there remains residual birefringence and residual stresses originated from flow history and differential cooling. The present study focused on developing a technique to measure the birefringence in transparent injection-molded optical plastic parts using two methods as follows: (i) the two colored laser method, (ii) the R-G-B separation method of white light. The main idea of both methods came from the fact that more information can be obtained from the distribution of retardation caused by different wavelengths. The comparison between two methods is demonstrated for the same sample of which retardation is up to 850 nm.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2523
Author(s):  
Franciszek Pawlak ◽  
Miguel Aldas ◽  
Francisco Parres ◽  
Juan López-Martínez ◽  
Marina Patricia Arrieta

Poly(lactic acid) (PLA) was plasticized with maleinized linseed oil (MLO) and further reinforced with sheep wool fibers recovered from the dairy industry. The wool fibers were firstly functionalized with 1 and 2.5 phr of tris(2-methoxyethoxy)(vinyl) (TVS) silane coupling agent and were further used in 1, 5, and 10 phr to reinforce the PLA/MLO matrix. Then, the composite materials were processed by extrusion, followed by injection-molding processes. The mechanical, thermal, microstructural, and surface properties were assessed. While the addition of untreated wool fibers to the plasticized PLA/MLO matrix caused a general decrease in the mechanical properties, the TVS treatment was able to slightly compensate for such mechanical losses. Additionally, a shift in cold crystallization and a decrease in the degree of crystallization were observed due to the fiber silane modification. The microstructural analysis confirmed enhanced interaction between silane-modified fibers and the polymeric matrix. The inclusion of the fiber into the PLA/MLO matrix made the obtained material more hydrophobic, while the yellowish color of the material increased with the fiber content.


2014 ◽  
Vol 37 ◽  
pp. 112-116 ◽  
Author(s):  
L. Zsíros ◽  
A. Suplicz ◽  
G. Romhány ◽  
T. Tábi ◽  
J.G. Kovács

2001 ◽  
Vol 2 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Young Il Kwon ◽  
Tae Jin Kang ◽  
Kwansoo Chung ◽  
Jae Ryoun Youn

Author(s):  
Kurt Beiter ◽  
Kosuke Ishii ◽  
Lee Hornberger

Abstract This paper describes the development of geometry-based indices that predict sink mark depth in injection molded parts. Plastic part designers need such indices to incorporate manufacturability concerns at the conceptual stage of design. These indices apply to several form features so engineers do not have to check different design rules for each geometry element. First, we propose a geometry-based sink index that can be used to predict sink mark depth as a function of process conditions such as packing pressure. Next, we explain how this relationship is identified through experiments. We also describe HyperDesign/Plastics, a Macintosh-based design aid that incorporates the sink index.


1996 ◽  
Vol 17 (5) ◽  
pp. 649-655 ◽  
Author(s):  
Deborah F. Mielewski ◽  
Nitin R. Anturkar ◽  
David R. Bauer

Sign in / Sign up

Export Citation Format

Share Document