Variations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE

2008 ◽  
Vol 82 (12) ◽  
pp. 917-927 ◽  
Author(s):  
J. Klokočník ◽  
C. A. Wagner ◽  
J. Kostelecký ◽  
A. Bezděk ◽  
P. Novák ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
pp. 133-143
Author(s):  
Ayelen Pereira ◽  
Cecilia Cornero ◽  
Ana C. O. C. Matos ◽  
M. Cristina Pacino ◽  
Denizar Blitzkow

Abstract The continental water storage is significantly in-fluenced by wetlands, which are highly affected by climate change and anthropogenic influences. The Pantanal, located in the Paraguay river basin, is one of the world’s largest and most important wetlands because of the environmental biodiversity that represents. The satellite gravity mission GRACE (Gravity Recovery And Climate Experiment) provided until 2017 time-variable Earth’s gravity field models that reflected the variations due to mass transport processes-like continental water storage changes-which allowed to study environments such as wetlands, at large spatial scales. The water storage variations for the period 2002-2016, by using monthly land water mass grids of Total Water Storage (TWS) derived from GRACE solutions, were evaluated in the Pantanal area. The capability of the GRACE mission for monitoring this particular environment is analyzed, and the comparison of the water mass changes with rainfall and hydrometric heights data at different stations distributed over the Pantanal region was carried out. Additionally, the correlation between the TWS and river gauge measurements, and the phase differences for these variables, were also evaluated. Results show two distinct zones: high correlations and low phase shifts at the north, and smaller correlation values and consequently significant phase differences towards the south. This situation is mainly related to the hydrogeological domains of the area.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 183
Author(s):  
Yongjie Liu ◽  
Yu Jiang ◽  
Hengnian Li ◽  
Hui Zhang

This paper intends to show some special types of orbits around Jupiter based on the mean element theory, including stationary orbits, sun-synchronous orbits, orbits at the critical inclination, and repeating ground track orbits. A gravity model concerning only the perturbations of J2 and J4 terms is used here. Compared with special orbits around the Earth, the orbit dynamics differ greatly: (1) There do not exist longitude drifts on stationary orbits due to non-spherical gravity since only J2 and J4 terms are taken into account in the gravity model. All points on stationary orbits are degenerate equilibrium points. Moreover, the satellite will oscillate in the radial and North-South directions after a sufficiently small perturbation of stationary orbits. (2) The inclinations of sun-synchronous orbits are always bigger than 90 degrees, but smaller than those for satellites around the Earth. (3) The critical inclinations are no-longer independent of the semi-major axis and eccentricity of the orbits. The results show that if the eccentricity is small, the critical inclinations will decrease as the altitudes of orbits increase; if the eccentricity is larger, the critical inclinations will increase as the altitudes of orbits increase. (4) The inclinations of repeating ground track orbits are monotonically increasing rapidly with respect to the altitudes of orbits.


2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Harika Munagapati ◽  
Virendra M. Tiwari

The nature of hydrological seasonality over the Himalayan Glaciated Region (HGR) is complex due to varied precipitation patterns. The present study attempts to exemplify the spatio-temporal variation of hydrological mass over the HGR using time-variable gravity from the Gravity Recovery and Climate Experiment (GRACE) satellite for the period of 2002–2016 on seasonal and interannual timescales. The mass signal derived from GRACE data is decomposed using empirical orthogonal functions (EOFs), allowing us to identify the three broad divisions of HGR, i.e., western, central, and eastern, based on the seasonal mass gain or loss that corresponds to prevailing climatic changes. Further, causative relationships between climatic variables and the EOF decomposed signals are explored using the Granger causality algorithm. It appears that a causal relationship exists between total precipitation and total water storage from GRACE. EOF modes also indicate certain regional anomalies such as the Karakoram mass gain, which represents ongoing snow accumulation. Our causality result suggests that the excessive snowfall in 2005–2008 has initiated this mass gain. However, as our results indicate, despite the dampening of snowfall rates after 2008, mass has been steadily increasing in the Karakorum, which is attributed to the flattening of the temperature anomaly curve and subsequent lower melting after 2008.


2021 ◽  
Vol 13 (16) ◽  
pp. 3075
Author(s):  
Ming Xu ◽  
Xiaoyun Wan ◽  
Runjing Chen ◽  
Yunlong Wu ◽  
Wenbing Wang

This study compares the Gravity Recovery And Climate Experiment (GRACE)/GRACE Follow-On (GFO) errors with the coseismic gravity variations generated by earthquakes above Mw8.0s that occurred during April 2002~June 2017 and evaluates the influence of monthly model errors on the coseismic signal detection. The results show that the precision of GFO monthly models is approximately 38% higher than that of the GRACE monthly model and all the detected earthquakes have signal-to-noise ratio (SNR) larger than 1.8. The study concludes that the precision of the time-variable gravity fields should be improved by at least one order in order to detect all the coseismic gravity signals of earthquakes with M ≥ 8.0. By comparing the spectral intensity distribution of the GFO stack errors and the 2019 Mw8.0 Peru earthquake, it is found that the precision of the current GFO monthly model meets the requirement to detect the coseismic signal of the earthquake. However, due to the limited time length of the observations and the interference of the hydrological signal, the coseismic signals are, in practice, difficult to extract currently.


2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Monika Biryło ◽  
Jolanta Nastula

AbstractIn the paper an Equivalent Water Thickness (EWT) determination as a way of observing gravity variations is described. Since raw data acquired directly from Gravity Recovery and Climate Experiment - GRACE satellites is unsuitable for analysis due to stripes occurrence, a filtering algorithm must be used. In this paper, authors are testing two isotropic (Gauss, CNES/GRGS) filters and two anisotropic filters (Wiener- -Kolomogorov, ANS). Correlation, amplitude ratio, and modification were determined as well as maps were generated.


2021 ◽  
Vol 265 ◽  
pp. 112650
Author(s):  
Daocheng Yu ◽  
Cheinway Hwang ◽  
Ole Baltazar Andersen ◽  
Emmy T.Y. Chang ◽  
Lucile Gaultier

Sign in / Sign up

Export Citation Format

Share Document