scholarly journals Local flexibility market framework for grid support services to distribution networks

Author(s):  
Ioannis Bouloumpasis ◽  
Nima Mirzaei Alavijeh ◽  
David Steen ◽  
Anh Tuan Le

AbstractThe increasing volume of distributed resources and user-dependent loads in local networks has increased the concern for congestion and voltage management in distribution networks. To mitigate these issues, the implementation of local flexibility markets has been proposed to assist distribution system operators (DSOs) to manage their networks efficiently. This paper presents the framework of a local flexibility market, including the market participants and their roles. This framework aims to empower DSOs with a market-based instrument for the alleviation of congestion incidents by exploiting the flexibility of local resources. The proposed market aims to provide a tool for the holistic management of distribution networks by trading both reservation and activation of flexibility services, indifferent of the type and the timeline of the needed service. Three market modes are proposed, i.e., long-term, short-term and real-time market, and the interactions among those modes are shown. The operation of the market is explained in detail, including the identification of the needed services, the activation of the market as well as the proposed bidding, clearing and settlement mechanisms. The modelling of the long-term and real-time markets is also presented, along with some indicative simulation results for long-term and real-time services. Finally, the future developments as well as the major conclusions are discussed.

2021 ◽  
Vol 231 ◽  
pp. 01002
Author(s):  
Zahid Ullah ◽  
Nayyar Hussain Mirjat

Integrating decentralised energy sources into the traditional distribution networks can result in technical issues impacting the power quality. Innovative ideas are, therefore, needed to promote the transformation of systems to a smart grid. Distribution System operator (DSO) could make use of the flexibility of emerging technologies as a method to address these power quality issues. This study aims to present an overview of a local flexibility market (LFM) which will allow DSO requirements to be fulfilled through the (VPP) as an energy flexibility provider. The required optimization loads, generators and as well as storage units, are undertaken in the general algebraic modeling simulation (GAMS) environment. The aim of the optimization problem is to provide DSOs the opportunity to increase or curtail the local generations and loads in order to satisfy their requirement. The VPP will then be responsible for handling the relevant requests in real time to ensure the correct operating schedule of a resource is applied. The preliminary results of simulation studies presented in this paper have shown that the local market framework for flexibility could have potential for deferring investments in distribution network capacity, minimizing energy costs and improving the hosting capacity of distribution networks.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1959
Author(s):  
Delaram Azari ◽  
Shahab Shariat Torbaghan ◽  
Hans Cappon ◽  
Karel J. Keesman ◽  
Madeleine Gibescu ◽  
...  

The large-scale integration of intermittent distributed energy resources has led to increased uncertainty in the planning and operation of distribution networks. The optimal flexibility dispatch is a recently introduced, power flow-based method that a distribution system operator can use to effectively determine the amount of flexibility it needs to procure from the controllable resources available on the demand side. However, the drawback of this method is that the optimal flexibility dispatch is inexact due to the relaxation error inherent in the second-order cone formulation. In this paper we propose a novel bi-level optimization problem, where the upper level problem seeks to minimize the relaxation error and the lower level solves the earlier introduced convex second-order cone optimal flexibility dispatch (SOC-OFD) problem. To make the problem tractable, we introduce an innovative reformulation to recast the bi-level problem as a non-linear, single level optimization problem which results in no loss of accuracy. We subsequently investigate the sensitivity of the optimal flexibility schedules and the locational flexibility prices with respect to uncertainty in load forecast and flexibility ranges of the demand response providers which are input parameters to the problem. The sensitivity analysis is performed based on the perturbed Karush–Kuhn–Tucker (KKT) conditions. We investigate the feasibility and scalability of the proposed method in three case studies of standardized 9-bus, 30-bus, and 300-bus test systems. Simulation results in terms of local flexibility prices are interpreted in economic terms and show the effectiveness of the proposed approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
A. Elsherif ◽  
T. Fetouh ◽  
H. Shaaban

In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG). The expansion of the distributed generators- (DGs-) based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.


2012 ◽  
Vol 5 (1) ◽  
pp. 31-46
Author(s):  
S. Nazarovs ◽  
S. Dejus ◽  
T. Juhna

Abstract. Modelling of contamination spread and location of contamination source in a water distribution network is an important task. The paper considers applicability of real-time flow direction data based model for contaminant transport for a distribution network of a city. Simulations of several contamination scenarios are made to evaluate necessary number of flow direction sensors. It is found that for a model, containing major pipes of Riga distribution system, sensor number decrease from 927 to 207 results in average 20% increase of simulated contaminated length of pipes. Simulation data suggest that optimal number of sensors for Riga model is around 200.


2020 ◽  
Vol 10 (22) ◽  
pp. 7978
Author(s):  
Hugo Morais ◽  
Tiago Sousa ◽  
Rui Castro ◽  
Zita Vale

The introduction of electric vehicles (EVs) will have an important impact on global power systems, in particular on distribution networks. Several approaches can be used to schedule the charge and discharge of EVs in coordination with the other distributed energy resources connected on the network operated by the distribution system operator (DSO). The aggregators, as virtual power plants (VPPs), can help the system operator in the management of these distributed resources taking into account the network characteristics. In the present work, an innovative hybrid methodology using deterministic and the elitist nondominated sorting genetic algorithm (NSGA-II) for the EV scheduling problem is proposed. The main goal is to test this method with two conflicting functions (cost and greenhouse gas (GHG) emissions minimization) and performing a comparison with a deterministic approach. The proposed method shows clear advantages in relation to the deterministic method, namely concerning the execution time (takes only 2% of the time) without impacting substantially the obtained results in both objectives (less than 5%).


2020 ◽  
Vol 21 (2) ◽  
pp. 227-235
Author(s):  
Muhammad Rizki Apritama ◽  
I Wayan Koko Suryawan ◽  
Yosef Adicita

ABSTRACTThe clean water supply system network on Lengkang Kecil Island was developed in 2019. A small portion of the community's freshwater comes from harvesting rainwater and dug wells, which are only obtained during the rainy season. The primary source of clean water used by the community comes from underwater pipelines with a daily discharge of 0.86 l/sec. The water supply of the Lengkang Kecil Island community is 74.3 m3/day, with 146 House Connections (HCs) and to serve public facilities such as elementary schools, primary health centers, and mosques. Hydraulic evaluation of clean water distribution using EPANET 2.0 software on flow velocity shows the lowest rate of 0.29 m/s and the highest of 1.21 m/s. The lowest pressure value in the distribution system is 6.94-6.96 m and headloss units in the range 0.08-0.25 m/km. These three criteria are still within the distribution network design criteria (feasible). A carbon footprint can be calculated from each activity from the analysis of the evaluation of clean water distribution networks. The most massive emissions came from pumping activities with 131 kg CO2-eq, followed by emissions from wastewater 62.5 kgCO2-eq. Further research is needed to determine the quality of wastewater and the design for a centralized wastewater treatment plant (IPALT) to improve Lengkang Kecil Island residents' living standards.Keywords: Lengkang Kecil Island, water, EPANET, carbon footprintABSTRAKJaringan sistem penyediaan air bersih pada Pulau Lengkang Kecil dimulai pada tahun 2019. Sebagian kecil air bersih yang digunakan masyarakat berasal dari pemanenan air hujan dan sumur gali yang hanya didapat pada musim hujan. Sumber air bersih utama yang digunakan masyarakat berasal dari pengaliran perpipaan bawah laut dengan debit harian 0,86 l/detik. Kebutuhan air masyarakat Pulau Lengkang Kecil adalah 74,3 m3/hari dengan 146 Sambungan Rumah (SR) serta untuk melayani fasilitas umum seperti sekolah dasar (SD), puskesmas, dan masjid. Evaluasi hidrolis distribusi air bersih dengan menggunakan software EPANET 2.0 terhadap kriteria kecepatan aliran menunjukkan nilai terendah 0,29 m/s dan tertinggi 1,21 m/s. Nilai sisa tekan dalam sistem distribusi adalah 6,94–6,96 m dan unit headloss pada kisaran 0,08–0,25 m/km. Ketiga kriteria ini masih berada dalam kriteria desain jaringan distribusi (layak). Dari analisis evaluasi jaringan distribusi air bersih, dapat dihitung jejak karbon yang dihasilkan dari setiap kegiatannya. Emisi terbesar berasal dari kegiatan pemompaan dengan nilai 131 kgCO2-eq, diikuti dengan emisi yang berasal dari air limbah dengan nilai 62,5 kgCO2-eq. Penelitian lanjutan diperlukan untuk mengetahui kualitas dari air limbah dan desain untuk instalasi pengolahan air limbah terpusat (IPALT) untuk meningkatkan taraf hidup penduduk Pulau Lengkang Kecil.Kata kunci: Pulau Lengkang Kecil, air, EPANET, jejak karbon


Sign in / Sign up

Export Citation Format

Share Document