Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus

1995 ◽  
Vol 164 (2) ◽  
pp. 104-109 ◽  
Author(s):  
Knut Fuseler ◽  
H. Cypionka
2018 ◽  
Vol 78 (9) ◽  
pp. 1916-1924 ◽  
Author(s):  
Lucie Pokorna-Krayzelova ◽  
Dana Vejmelková ◽  
Lara Selan ◽  
Pavel Jenicek ◽  
Eveline I. P. Volcke ◽  
...  

Abstract Hydrogen sulfide is a toxic and usually undesirable by-product of the anaerobic treatment of sulfate-containing wastewater. It can be removed through microaeration, a simple and cost-effective method involving the application of oxygen-limiting conditions (i.e., dissolved oxygen below 0.1 mg L−1). However, the exact transformation pathways of sulfide under microaerobic conditions are still unclear. In this paper, batch experiments were performed to study biochemical and chemical sulfide oxidation under microaerobic conditions. The biochemical experiments were conducted using a strain of Sulfuricurvum kujiense. Under microaerobic conditions, the biochemical sulfide oxidation rate (in mg S L−1 d−1) was approximately 2.5 times faster than the chemical sulfide oxidation rate. Elemental sulfur was the major end-product of both biochemical and chemical sulfide oxidation. During biochemical sulfide oxidation elemental sulfur was in the form of white flakes, while during chemical sulfide oxidation elemental sulfur created a white suspension. Moreover, a mathematical model describing biochemical and chemical sulfide oxidation was developed and calibrated by the experimental results.


1994 ◽  
Vol 299 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Eric T. Clarke ◽  
Touradj Solouki ◽  
David H. Russell ◽  
Arthur E. Martell ◽  
Derek McManus

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Casper Thorup ◽  
Andreas Schramm ◽  
Alyssa J. Findlay ◽  
Kai W. Finster ◽  
Lars Schreiber

ABSTRACT This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus, with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus, with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Paolo Zucca ◽  
Gianmarco Cocco ◽  
Manuela Pintus ◽  
Antonio Rescigno ◽  
Enrico Sanjust

This paper describes the oxidation of inorganic sulfide to sulfate, minimizing the formation of elemental sulfur. The described catalytic reaction uses dilute hydrogen peroxide at nearly neutral pH values in the presence of a bioinspired, heterogenized, and commercial ferriporphin. A substantial increase of the percentage of sulfide converted to sulfate is obtained in comparison with the yields obtained when working with hydrogen peroxide alone. The biomimetic catalyst also proved to be a much more efficient catalyst than horseradish peroxidase. Accordingly, it could be suitable for large-scale applications. Further studies are in progress to drive sulfate yields up to nearly quantitative.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 359-366 ◽  
Author(s):  
Peter Fox ◽  
Venkatraghavan Venkatasubbiah

A pharmaceutical wastewater with a chemical oxygen demand (COD) concentration of 40,000 mg/l and a sulfate concentration of 5,000 mg/l was treated in a anaerobic baffled reactor. Treatment of the wastewater at 10% dilution was effective but at higher influent concentrations sulfide inhibition reduced efficacy of both COD conversion and sulfate conversion. A recycle line with an attached-film biological reactor was inserted into the anaerobic baffled reactor to facilitate biological sulfide oxidation. Recycling anaerobic effluent through a sulfide oxidizing biological system reduced inhibition in the anaerobic reactor by both reducing inhibitory sulfide concentrations within the reactor and by diluting the influent. The major product of the biological oxidation of sulfide by a Thiobacillus species appeared to be elemental sulfur. At an influent wastewater concentration of 40% and a HRT of 1 day, COD removal efficiencies were greater than 50% and the conversion of influent sulfate was greater than 95% with effluent sulfide concentrations of less than 20 mg/l. The major product observed from degradation of isopropyl acetate was acetic acid. Coupled anaerobic/aerobic provided removal of sulfur from the wastewater stream and helped to stabilize the pH in the reactor system.


1993 ◽  
Vol 39 (12) ◽  
pp. 1166-1168 ◽  
Author(s):  
C. W. Chan ◽  
Isamu Suzuki

A sensitive and quantitative analytical method for determining elemental sulfur in a biological system was developed. Elemental sulfur was determined after extraction with petroleum ether by cyanolysis and ferric thiocyanate color formation in acetone. The method was successfully applied to show that sulfide was oxidized by Thiobacillus thiooxidans to elemental sulfur nearly stoichiometrically when further oxidation of elemental sulfur was inhibited by N-ethylmaleimide.Key words: elemental sulfur, quantitative analysis, sulfide oxidation, Thiobacillus thiooxidans.


2009 ◽  
Vol 59 (7) ◽  
pp. 1323-1329 ◽  
Author(s):  
Armando Gonzalez-Sanchez ◽  
Maria Tomas ◽  
Antoni David Dorado ◽  
Xavier Gamisans ◽  
Albert Guisasola ◽  
...  

A kinetic model for the elemental sulfur and sulfate production from the autotrophic sulfide oxidation has been proposed. It is based on two kinetic equations able to describe the simultaneous microbial consumption of oxygen and sulfide (OUR and SUR) as a function of a particular sulfide-oxidizing microorganism or its physiological state, these can be characterized by the assessment of their kinetic constants. The respirometric technique allowed to estimate the dynamic experimental OUR and SUR profiles, which were used to calibrate the kinetic model. The ratio OUR/SUR was proposed to predict the sulfide oxidation extent and then the fate of sulfide to elemental sulfur and sulfate.


1999 ◽  
Vol 65 (7) ◽  
pp. 3148-3157 ◽  
Author(s):  
Sandra Otte ◽  
J. Gijs Kuenen ◽  
Lars P. Nielsen ◽  
Hans W. Paerl ◽  
Jakob Zopfi ◽  
...  

ABSTRACT Filamentous sulfur bacteria of the genus Thioplocaoccur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioplocasheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioplocasamples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.


Sign in / Sign up

Export Citation Format

Share Document