scholarly journals The 28 + 28 day design is an effective sampling time for analyzing mutant frequencies in rapidly proliferating tissues of MutaMouse animals

2021 ◽  
Vol 95 (3) ◽  
pp. 1103-1116
Author(s):  
Francesco Marchetti ◽  
Gu Zhou ◽  
Danielle LeBlanc ◽  
Paul A. White ◽  
Andrew Williams ◽  
...  

AbstractThe Organisation for Economic Co-Operation and Development Test Guideline 488 (TG 488) uses transgenic rodent models to generate in vivo mutagenesis data for regulatory submission. The recommended design in TG 488, 28 consecutive daily exposures with tissue sampling three days later (28 + 3d), is optimized for rapidly proliferating tissues such as bone marrow (BM). A sampling time of 28 days (28 + 28d) is considered more appropriate for slowly proliferating tissues (e.g., liver) and male germ cells. We evaluated the impact of the sampling time on mutant frequencies (MF) in the BM of MutaMouse males exposed for 28 days to benzo[a]pyrene (BaP), procarbazine (PRC), isopropyl methanesulfonate (iPMS), or triethylenemelamine (TEM) in dose–response studies. BM samples were collected + 3d, + 28d, + 42d or + 70d post exposure and MF quantified using the lacZ assay. All chemicals significantly increased MF with maximum fold increases at 28 + 3d of 162.9, 6.6, 4.7 and 2.8 for BaP, PRC, iPMS and TEM, respectively. MF were relatively stable over the time period investigated, although they were significantly increased only at 28 + 3d and 28 + 28d for TEM. Benchmark dose (BMD) modelling generated overlapping BMD confidence intervals among the four sampling times for each chemical. These results demonstrate that the sampling time does not affect the detection of mutations for strong mutagens. However, for mutagens that produce small increases in MF, sampling times greater than 28 days may produce false-negative results. Thus, the 28 + 28d protocol represents a unifying protocol for simultaneously assessing mutations in rapidly and slowly proliferating somatic tissues and male germ cells.

Author(s):  
Hyoung-Jin Moon ◽  
Won Lee ◽  
Ji-Soo Kim ◽  
Eun-Jung Yang ◽  
Hema Sundaram

Abstract Background Aspiration testing before filler injection is controversial. Some believe that aspiration can help prevent inadvertent intravascular injection, while others cite false-negative results and question its value given that the needle position always changes somewhat during injection procedures. Objectives To test the relation of false-negative results to the viscosity of the material within the needle lumen and determine whether a less viscous material within the needle lumen could decrease the incidence of false-negative results. Methods In vitro aspiration tests were performed using 30-G and 27-G needle gauges, two cross-linked hyaluronic acid fillers, normal saline bags pressurized at 140 and 10 mmHg to mimic human arterial and venous pressures, and three needle lumen conditions (normal saline, air, and filler). Testing was repeated three times under each study condition (72 tests in total). For in vivo correlation, aspiration tests were performed on femoral arteries and central auricular veins in three rabbits (4–5 aspirations per site, 48 tests in total). Results In vitro and in vivo testing using 30-G needles containing filler both showed false-negative results on aspiration testing. In vitro and in vivo testing using needles containing saline or air showed positive findings. Conclusions False-negative results from aspiration testing may be reduced by pre-filling the needle lumen with saline rather than a filler. The pressurized system may help overcome challenges of animal models with intravascular pressures significantly different from those of humans. The adaptability of this system to mimic various vessel pressures may facilitate physiologically relevant studies of vascular complications.


2022 ◽  
Vol 2 (1) ◽  
pp. e0000106
Author(s):  
Alisha Chaudhry ◽  
Jane Cunningham ◽  
Qin Cheng ◽  
Michelle L. Gatton

Malaria rapid diagnostic tests (RDTs) are dominated by products which use histidine-rich protein 2 (HRP2) to detect Plasmodium falciparum. The emergence of parasites lacking the pfhrp2 gene can lead to high rates of false-negative results amongst these RDTs. One solution to restore the ability to correctly diagnose falciparum malaria is to switch to an RDT which is not solely reliant on HRP2. This study used an agent-based stochastic simulation model to investigate the impact on prevalence and transmission caused by switching the type of RDT used once false-negative rates reached pre-defined thresholds within the treatment-seeking symptomatic population. The results show that low transmission settings were the first to reach the false-negative switch threshold, and that lower thresholds were typically associated with better long-term outcomes. Changing the diagnostic RDT away from a HRP2-only RDT is predicted to restore the ability to correctly diagnose symptomatic malaria infections, but often did not lead to the extinction of HRP2-negative parasites from the population which continued to circulate in low density infections, or return to the parasite prevalence and transmission levels seen prior to the introduction of the HRP2-negative parasite. In contrast, failure to move away from HRP2-only RDTs leads to near fixation of these parasites in the population, and the inability to correctly diagnose symptomatic cases. Overall, these results suggest pfhrp2-deleted parasites are likely to become a significant component of P. falciparum parasite populations, and that long-term strategies are needed for diagnosis and surveillance which do not rely solely on HRP2.


Author(s):  
Yi-Sheng Song ◽  
Ming-Zhu Dai ◽  
Chen-Xia Zhu ◽  
Yan-Feng Huang ◽  
Jing Liu ◽  
...  

The zebrafish as an alternative animal model for developmental toxicity testing has been extensively investigated, but its assay protocol was not harmonized yet. This study has validated and optimized the zebrafish developmental toxicity assay previously reported by multiple inter-laboratory studies in the United States and Europe. In this study, using this classical protocol, of 31 ICH-positive compounds, 23 compounds (74.2%) were teratogenic in zebrafish, five had false-negative results, and three were neither teratogenic nor non-teratogenic according to the protocol standard; of 14 ICH-negative compounds, 12 compounds (85.7%) were non-teratogenic in zebrafish and two had false-positive results. After we added an additional TI value in the zebrafish treated with testing compounds at 2 dpf along with the original 5 dpf, proposed a new category as the uncategorized compounds for those TI values smaller than the cutoff both at 2 dpf and 5 dpf but inducing toxic phenotypes, refined the testing concentration ranges, and optimized the TI cut-off value from ≥ 10 to ≥ 3 for compounds with refined testing concentrations, this optimized zebrafish developmental assay reached 90.3% sensitivity (28/31 positive compounds were teratogenic in zebrafish) and 88.9% (40/45) overall predictability. Our results from this study strongly support the use of zebrafish as an alternative in vivo method for screening and assessing the teratogenicity of candidate drugs for regulatory acceptance.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Iain J. MacLeod ◽  
Christopher F. Rowley ◽  
M. Essex

AbstractSensitive and reproducible diagnostics are fundamental to containing the spread of existing and emerging pathogens. Despite the reliance of clinical virology on qPCR, technical challenges persist that compromise their reliability for sustainable epidemic containment as sequence instability in probe-binding regions produces false-negative results. We systematically violated canonical qPCR design principles to develop a Pan-Degenerate Amplification and Adaptation (PANDAA), a point mutation assay that mitigates the impact of sequence variation on probe-based qPCR performance. Using HIV-1 as a model system, we optimized and validated PANDAA to detect HIV drug resistance mutations (DRMs). Ultra-degenerate primers with 3’ termini overlapping the probe-binding site adapt the target through site-directed mutagenesis during qPCR to replace DRM-proximal sequence variation. PANDAA-quantified DRMs present at frequency ≥5% (2 h from nucleic acid to result) with a sensitivity and specificity of 96.9% and 97.5%, respectively. PANDAA is an innovative advancement with applicability to any pathogen where target-proximal genetic variability hinders diagnostic development.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. S14-S37 ◽  
Author(s):  
Matthew Cleevely ◽  
Daniel Susskind ◽  
David Vines ◽  
Louis Vines ◽  
Samuel Wills

Abstract This paper argues for the regular testing of people in groups that are more likely to be exposed to SARS-CoV-2, to reduce the spread of COVID-19 and resume economic activity. We call this ‘stratified periodic testing’. It is ‘stratified’ as it is based on at-risk groups, and ‘periodic’ as everyone in the group is tested at regular intervals. We argue that this is a better use of scarce testing resources than ‘universal random testing’, as has been recently discussed globally. We find that, under reasonable assumptions and allowing for false negative results 30 per cent of the time, 17 per cent of a subgroup would need to be tested each day to lower the effective reproduction number R from 2.5 to 0.75, under stratified periodic testing. Using the same assumptions the universal random testing rate would need to be 27 per cent (as opposed to 7 per cent as argued by Romer (2020b)). We obtain this rate of testing using a corrected method for calculating the impact of an infectious person on others, and allowing for asymptomatic cases. We also find that the effect of one day’s delay between testing positive and self-isolating is similar to having a test that is 30 per cent less accurate.


2019 ◽  
Author(s):  
Simone Hornemann ◽  
Petra Schwarz ◽  
Elisabeth J. Rushing ◽  
Michael D. Connolly ◽  
Ronald N. Zuckermann ◽  
...  

AbstractPrions cause transmissible infectious diseases in humans and animals and have been found to be transmissible by blood transfusion even in the presymptomatic stage. However, the concentration of prions in body fluids such as blood and urine is extremely low, and therefore direct diagnostic tests on such specimens often yield false-negative results. Quantitative preanalytical prion enrichment may significantly improve the sensitivity of prion assays by concentrating trace amounts of prions from large volumes of body fluids. Here we show that beads conjugated to positively charged peptoids not only captured PrP aggregates from plasma of prion-infected hamsters, but also adsorbed prion infectivity in both the symptomatic and preclinical stages of the disease. Bead absorbed prion infectivity efficiently transmitted disease to transgenic indicator mice. We found that the readout of the peptoid-based misfolded protein assay (MPA) correlates closely with prion infectivity in vivo, thereby validating the MPA as a simple, quantitative, and sensitive surrogate indicator of the presence of prions. The reliable and sensitive detection of prions in plasma will enable a wide variety of applications in basic prion research and diagnostics.


2022 ◽  
Author(s):  
Divya Sharma ◽  
Chengjin Ye ◽  
Giusppe Lippi ◽  
Jordi B. Torrelles ◽  
Luis Martinez-Sobrido ◽  
...  

Abstract Background The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC) Omicron (B.1.1.529) has rapidly spread around the world presenting a new threat to global public human health. Due to the large number of mutations possessed by Omicron, concerns have emerged over potentially reduced diagnostic accuracy of reverse transcription polymerase chain reaction (RT-qPCR), the gold standard diagnostic test for SARS-CoV-2. Here, we aimed to assess the impact of Omicron on the integrity and sensitivity of RT-qPCR assays used for coronavirus disease-2019 (COVID-19) diagnosis via in silico analysis employing whole genome sequencing data and evaluated the potential for false negatives or test failure due to mismatches between primers/probes and viral genome. Methods In silico sensitivity of 12 RT-qPCR tests (containing 30 primers and probe sets) developed for detection of SARS-CoV-2 reported by the World Health Organization (WHO) or available in the literature, was assessed for use in detecting SARS-CoV-2 Omicron BA.1 and BA.2 sublineages, obtained after removing redundancy from publicly available genomes from National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Avian Influenza Data (GISAID) databases. The mismatches between the amplicon regions of the SARS-CoV-2 Omicron VoC and primers and probe sets were evaluated, and the clustering analysis of the corresponding amplicon sequences was carried out. Results From the 232 representative SARS-CoV-2 BA.1 Omicron sublineage genomes analyzed, 229 showed substitutions at the forward primer annealing site for assay China-CDC N, 226 showed mismatches in the reverse primer annealing site for assay Thai N, and all 232 had substitution at the 3’ end of the reverse primer annealing site for assay HKUniv RdRp/Hel. Therefore, the lowest sensitivity was observed for assay ChinaCDC N, Thai N and HKUniv RdRp/Hel for SARS-CoV-2 BA.1 sublineage genomes. For 5 SARS-CoV-2 BA.2 Omicron sublineage genomes, false negative results were observed for assays ChinaCDC N, Thai N, HKUniv RdRp/Hel, SigmAldr S5, SigmAldr S6 and HKUniv S. Conclusion In this study, we observed three (25%) assays (ChinaCDC N, Thai N, and HKUniv RdRp/Hel) demonstrated potential for false negatives for the SARS-CoV-2 Omicron BA.1 sublineage, while four (33.3%) assays (ChinaCDC N, Thai N, HKUniv RdRp/Hel, HKUniv S, SigmAldr S5 and SigmAldr S6) demonstrated potential false negative results for the for SARS-CoV-2 Omicron BA.2 sublineage, which also has the potential for Spike (S) gene dropout despite lacking 69-70 deletion in the S gene. Further, amplicon clustering and additional substitutions analysis along with the sensitivity analysis could be used for modification and development of RT-qPCR assays for detection of SARS-CoV-2 Omicron VoC lineages.


Author(s):  
Sara B Griesemer ◽  
Greta Van Slyke ◽  
Kirsten St. George

AbstractAccommodating large increases in sample workloads has presented one of the biggest challenges to clinical laboratories during the COVID-19 pandemic. Despite the implementation of new automated detection systems, and previous efficiencies such as barcoding, electronic data transfer and extensive robotics, throughput capacities have struggled to meet the demand. Sample pooling has been suggested as an additional strategy to further address this need. The greatest concern with this approach in a clinical setting is the potential for reduced sensitivity, particularly the risk of false negative results when weak positive samples are pooled. To investigate this possibility, detection rates in pooled samples were evaluated, with extensive assessment of pools containing weak positive specimens. Additionally, the frequency of occurrence of weak positive samples across ten weeks of the pandemic were reviewed. Weak positive specimens were detected in all five-sample pools but failed to be detected in four of the 24 nine-sample pools tested. Weak positive samples comprised an average 16.5% of the positive specimens tested during the pandemic thus far, slightly increasing in frequency during later weeks. Other aspects of the testing process should be considered, however, such as accessioning and reporting, which are not streamlined and may be complicated by pooling procedures. Therefore, the impact on the entire laboratory process needs to be carefully assessed prior to implementing such a strategy.


Sign in / Sign up

Export Citation Format

Share Document