scholarly journals An operator ideal generated by Orlicz spaces

2019 ◽  
Vol 376 (3-4) ◽  
pp. 1675-1703
Author(s):  
Mieczysław Mastyło

Abstract Absolutely $$\varphi $$φ-summing operators between Banach spaces generated by Orlicz spaces are investigated. A variant of Pietsch’s domination theorem is proved for these operators and applied to prove vector-valued inequalities. These results are used to prove asymptotic estimates of $$\pi _\varphi $$πφ-summing norms of finite-dimensional operators and also diagonal operators between Banach sequence lattices for a wide class of Orlicz spaces based on exponential convex functions $$\varphi $$φ. The key here is the description of a space of coefficients of the Rademacher series in this class of Orlicz spaces, proved via interpolation methods. As by-product, some absolutely $$\varphi $$φ-summing operators on the Hilbert space $$\ell _2$$ℓ2 are characterized in terms of its approximation numbers.

2001 ◽  
Vol 64 (3) ◽  
pp. 739-754 ◽  
Author(s):  
THOMAS KÜHN ◽  
TOMAS P. SCHONBEK

Upper and lower bounds are established for the entropy numbers of certain diagonal operators between Banach sequence spaces. These diagonal operators are isomorphisms between the spaces considered in the paper and weighted sequence spaces considered by Leopold so that the entropy numbers in question coincide with those considered by Leopold. The results in the paper improve the previous results in at least two ways. The estimates in the paper are ‘almost’ sharp in the sense that the upper and lower estimates differ only by logarithmic factors for a much wider range of parameters. Moreover, all the upper estimates are improvements on the previous ones, the improvement being quite significant in some cases.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Author(s):  
Paweł Wójcik

AbstractWe observe that every map between finite-dimensional normed spaces of the same dimension that respects fixed semi-inner products must be automatically a linear isometry. Moreover, we construct a uniformly smooth renorming of the Hilbert space $$\ell _2$$ ℓ 2 and a continuous injection acting thereon that respects the semi-inner products, yet it is non-linear. This demonstrates that there is no immediate extension of the former result to infinite dimensions, even under an extra assumption of uniform smoothness.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1988 ◽  
Vol 31 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Michael Cambern ◽  
Peter Greim

AbstractA well known result due to Dixmier and Grothendieck for spaces of continuous scalar-valued functions C(X), X compact Hausdorff, is that C(X) is a Banach dual if, and only if, Xis hyperstonean. Moreover, for hyperstonean X, the predual of C(X) is strongly unique. Here we obtain a formulation of this result for spaces of continuous vector-valued functions. It is shown that if E is a Hilbert space and C(X, (E, σ *) ) denotes the space of continuous functions on X to E when E is provided with its weak * ( = weak) topology, then C(X, (E, σ *) ) is a Banach dual if, and only if, X is hyperstonean. Moreover, for hyperstonean X, the predual of C(X, (E, σ *) ) is strongly unique.


1973 ◽  
Vol 16 (3) ◽  
pp. 455-456
Author(s):  
I. M. Michael

Let H be a Hilbert space with inner product 〈,). A well-known theorem of von Neumann states that, if S is a symmetric operator in H, then S has a selfadjoint extension in H if and only if S has equal deficiency indices. This result was extended by Naimark, who proved that, even if the deficiency indices of S are unequal, there always exists a Hilbert space H1 such that H ⊆ H1 and S has a selfadjoint extension in H1.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
P. Rueda ◽  
E. A. Sánchez Pérez

We show a Dvoretzky-Rogers type theorem for the adapted version of theq-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector valued version of convergence in the weak topology, is equivalent to the convergence with respect to the norm. Examples and applications are also given.


Sign in / Sign up

Export Citation Format

Share Document