scholarly journals High perturbations of quasilinear problems with double criticality

Author(s):  
Claudianor O. Alves ◽  
Prashanta Garain ◽  
Vicenţiu D. Rădulescu

AbstractThis paper is concerned with the qualitative analysis of solutions to the following class of quasilinear problems $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{\Phi }u=f(x,u) &{}\quad \text {in } \Omega ,\\ u=0 &{}\quad \text {on }\partial \Omega , \end{array} \right. \end{aligned}$$ - Δ Φ u = f ( x , u ) in Ω , u = 0 on ∂ Ω , where $$\Delta _{\Phi }u=\mathrm{div}\,(\varphi (x,|\nabla u|)\nabla u)$$ Δ Φ u = div ( φ ( x , | ∇ u | ) ∇ u ) and $$\Phi (x,t)=\int _{0}^{|t|}\varphi (x,s)s\,ds$$ Φ ( x , t ) = ∫ 0 | t | φ ( x , s ) s d s is a generalized N-function. We assume that $$\Omega \subset {\mathbb {R}}^N$$ Ω ⊂ R N is a smooth bounded domain that contains two open regions $$\Omega _N,\Omega _p$$ Ω N , Ω p with $${\overline{\Omega }}_N \cap {\overline{\Omega }}_p=\emptyset $$ Ω ¯ N ∩ Ω ¯ p = ∅ . The features of this paper are that $$-\Delta _{\Phi }u$$ - Δ Φ u behaves like $$-\Delta _N u $$ - Δ N u on $$\Omega _N$$ Ω N and $$-\Delta _p u $$ - Δ p u on $$\Omega _p$$ Ω p , and that the growth of $$f:\Omega \times {\mathbb {R}} \rightarrow {\mathbb {R}}$$ f : Ω × R → R is like that of $$e^{\alpha |t|^{\frac{N}{N-1}}}$$ e α | t | N N - 1 on $$\Omega _N$$ Ω N and as $$|t|^{p^{*}-2}t$$ | t | p ∗ - 2 t on $$\Omega _p$$ Ω p when |t| is large enough. The main result establishes the existence of solutions in a suitable Musielak–Sobolev space in the case of high perturbations with respect to the values of a positive parameter.

2015 ◽  
Vol 4 (2) ◽  
pp. 109-121 ◽  
Author(s):  
Sweta Tiwari

AbstractIn this paper, we study the existence of a solution of the N-Laplacian critical problem with discontinuous nonlinearity of Heaviside type in a smooth bounded domain with respect to a positive parameter λ.


2001 ◽  
Vol 1 (2) ◽  
Author(s):  
Daomin Cao ◽  
Ezzat S. Noussair ◽  
Shusen Yan

AbstractWe establish the existence of solutions of the problemunder various assumptions on the level sets of Q(x), where Ω is a smooth bounded domain in ℝ


2003 ◽  
Vol 05 (02) ◽  
pp. 179-195 ◽  
Author(s):  
M. BEN AYED ◽  
K. EL MEHDI ◽  
O. REY ◽  
M. GROSSI

This paper is concerned with the nonlinear elliptic problem (Pε): -Δu = up+ε, u > 0 in Ω; u = 0 on ∂Ω, where Ω is a smooth bounded domain in ℝn, n ≥ 3, p + 1 = 2n/(n - 2) is the critical Sobolev exponent and ε is a small positive parameter. In contrast with the subcritical problem (P- ε) studied by Han [11] and Rey [17], we show that (Pε) has no single peaked solution for small ε.


2009 ◽  
Vol 07 (04) ◽  
pp. 373-390 ◽  
Author(s):  
GEORGE DINCA ◽  
PAVEL MATEI

Let Ω ⊂ ℝN, N ≥ 2, be a smooth bounded domain. It is shown that: (a) if [Formula: see text] and ess inf x ∈ y p(x) > 1, then the generalized Lebesgue space (Lp (·)(Ω), ‖·‖p(·)) is smooth; (b) if [Formula: see text] and p(x) > 1, [Formula: see text], then the generalized Sobolev space [Formula: see text] is smooth. In both situations, the formulae for the Gâteaux gradient of the norm corresponding to each of the above spaces are given; (c) if [Formula: see text] and p(x) ≥ 2, [Formula: see text], then [Formula: see text] is uniformly convex and smooth.


2012 ◽  
Vol 55 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Sihua Liang ◽  
Jihui Zhang

AbstractWe consider a class of critical quasilinear problemswhere 0 ∈ Ω ⊂ ℝN, N ≥ 3, is a bounded domain and 1 < p < N, a < N/p, a ≤ b < a + 1, λ is a positive parameter, 0 ≤ μ < $\bar{\mu}$ ≡ ((N − p)/p − a)p, q = q*(a, b) ≡ Np/[N − pd] and d ≡ a+1 − b. Infinitely many small solutions are obtained by using a version of the symmetric Mountain Pass Theorem and a variant of the concentration-compactness principle. We deal with a problem that extends some results involving singularities not only in the nonlinearities but also in the operator.


2016 ◽  
Vol 8 (1) ◽  
pp. 144-174 ◽  
Author(s):  
Boumediene Abdellaoui ◽  
Ahmed Attar ◽  
Rachid Bentifour

Abstract The aim of this paper is to study the following problem: \left\{\begin{aligned} \displaystyle(-\Delta)^{s}_{p,\beta}u&\displaystyle=f(x% ,u)&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. where Ω is a smooth bounded domain of {\mathbb{R}^{N}} containing the origin, (-\Delta)^{s}_{p,\beta}u(x):=\mathrm{PV}\int_{\mathbb{R}^{N}}\frac{\lvert u(x)% -u(y)\rvert^{p-2}(u(x)-u(y))}{\lvert x-y\rvert^{N+ps}}\frac{dy}{\lvert x\rvert% ^{\beta}\lvert y\rvert^{\beta}} with {0\leq\beta<\frac{N-ps}{2}} , {1<p<N} , {s\in(0,1)} , and {ps<N} . The main purpose of this work is to prove the existence of a weak solution under some hypotheses on f. In particular, we will consider two cases: (i) {f(x,\sigma)=f(x)} ; in this case we prove the existence of a weak solution, that is, in a suitable weighted fractional Sobolev space for all {f\in L^{1}(\Omega)} . In addition, if {f\gneq 0} , we show that the problem above has a unique entropy positive solution. (ii) {f(x,\sigma)=\lambda\sigma^{q}+g(x)} , {\sigma\geq 0} ; in this case, according to the values of λ and q, we get the largest class of data g for which the problem above has a positive solution.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.


Sign in / Sign up

Export Citation Format

Share Document