In vivo electrophysiological assessment of the putative antidepressant Wf-516 in the rat raphe dorsalis, locus coeruleus and hippocampus

2007 ◽  
Vol 376 (5) ◽  
pp. 351-361 ◽  
Author(s):  
M. El Mansari ◽  
P. Blier
2017 ◽  
Vol 77 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Elisa Rodríguez-Ortega ◽  
Fernando Cañadas ◽  
Francisca Carvajal ◽  
Diana Cardona

1988 ◽  
Vol 89 (3) ◽  
pp. 361-366 ◽  
Author(s):  
Peter E. Simson ◽  
Mark A. Cierpial ◽  
Laura E. Heyneman ◽  
Jay M. Weiss

Synapse ◽  
2018 ◽  
Vol 73 (4) ◽  
pp. e22080 ◽  
Author(s):  
Alex L. Deal ◽  
Maria A. Mikhailova ◽  
Valentina P. Grinevich ◽  
Jeff L. Weiner ◽  
Raul R. Gainetdinov ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alessandro Galgani ◽  
Francesco Lombardo ◽  
Daniele Della Latta ◽  
Nicola Martini ◽  
Ubaldo Bonuccelli ◽  
...  

Abstract Purpose of Review Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. Recent findings LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. Summary LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0209842 ◽  
Author(s):  
Klodiana-Daphne Tona ◽  
Matthias J. P. van Osch ◽  
Sander Nieuwenhuis ◽  
Max C. Keuken
Keyword(s):  
7 Tesla ◽  

1996 ◽  
Vol 75 (5) ◽  
pp. 2029-2035 ◽  
Author(s):  
R. A. Travagli ◽  
M. Wessendorf ◽  
J. T. Williams

1. The nucleus locus coeruleus (LC) is made up of noradrenergic cells all of which are hyperpolarized by opioids. Recent work has shown that the reversal potential of the opioid-induced current is more negative than the potassium equilibrium potential. The aim of the present study was to determine whether the extent of the dendritic field could contribute to the very negative opioid reversal potential. 2. Individual LC cells were labeled in the brain slice preparation. The number of dendrites found on cells in slices sectioned in the horizontal plane was greater than cells in coronal slices. However, the dimensions of the cell body slices from each plane were not significantly different. 3. The resting conductance of neurons from slices cut in the horizontal plane was significantly larger than in cells from coronal plane. 4. The amplitude of the outward current induced by [Met5]-enkephalin (ME) was larger in cells from horizontal slices and the reversal potential was more negative than that of cells in coronal slices. 5. The results show that the plane of section influences the membrane properties and opioid actions of LC neurons in vitro and suggest that these differences correlate with the numbers of dendrites. The results suggest that in vivo, in addition to intrinsic membrane properties and synaptic inputs, the structural makeup of the nucleus is an important factor in determining the activity.


2015 ◽  
Vol 123 (3) ◽  
pp. 642-653 ◽  
Author(s):  
Isabel Martins ◽  
Paulina Carvalho ◽  
Martin G. de Vries ◽  
Armando Teixeira-Pinto ◽  
Steven P. Wilson ◽  
...  

Abstract Background: Noradrenaline reuptake inhibitors are known to produce analgesia through a spinal action but they also act in the brain. However, the action of noradrenaline on supraspinal pain control regions is understudied. The authors addressed the noradrenergic modulation of the dorsal reticular nucleus (DRt), a medullary pronociceptive area, in the spared nerve injury (SNI) model of neuropathic pain. Methods: The expression of the phosphorylated cAMP response element-binding protein (pCREB), a marker of neuronal activation, was evaluated in the locus coeruleus and A5 noradrenergic neurons (n = 6 rats/group). pCREB was studied in noradrenergic DRt-projecting neurons retrogradely labeled in SNI animals (n = 3). In vivo microdialysis was used to measure noradrenaline release in the DRt on nociceptive stimulation or after DRt infusion of clonidine (n = 5 to 6 per group). Pharmacology, immunohistochemistry, and western blot were used to study α-adrenoreceptors in the DRt (n = 4 to 6 per group). Results: pCREB expression significantly increased in the locus coeruleus and A5 of SNI animals, and most noradrenergic DRt-projecting neurons expressed pCREB. In SNI animals, noradrenaline levels significantly increased on pinprick (mean ± SD, 126 ± 14%; P = 0.025 vs. baseline) and acetone stimulation (mean ± SD, 151 ± 12%; P < 0.001 vs. baseline), and clonidine infusion showed decreased α2-mediated inhibitory function. α1-adrenoreceptor blockade decreased nociceptive behavioral responses in SNI animals. α2-adrenoreceptor expression was not altered. Conclusions: Chronic pain induces brainstem noradrenergic activation that enhances descending facilitation from the DRt. This suggests that antidepressants inhibiting noradrenaline reuptake may enhance pain facilitation from the brain, counteracting their analgesic effects at the spinal cord.


Sign in / Sign up

Export Citation Format

Share Document