scholarly journals Locus Coeruleus Magnetic Resonance Imaging in Neurological Diseases

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alessandro Galgani ◽  
Francesco Lombardo ◽  
Daniele Della Latta ◽  
Nicola Martini ◽  
Ubaldo Bonuccelli ◽  
...  

Abstract Purpose of Review Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. Recent findings LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. Summary LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 566
Author(s):  
Jae-Geun Lee ◽  
Hyun-Ju Cho ◽  
Yun-Mi Jeong ◽  
Jeong-Soo Lee

The microbiota–gut–brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota–gut–brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer’s disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zefeng Wang ◽  
Haitong Wan ◽  
Jinhui Li ◽  
Hong Zhang ◽  
Mei Tian

With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer’s disease, Parkinson’s disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2289
Author(s):  
Naresh Damuka ◽  
Paul Czoty ◽  
Ashley Davis ◽  
Michael Nader ◽  
Susan Nader ◽  
...  

Dysregulation of microtubules is commonly associated with several psychiatric and neurological disorders, including addiction and Alzheimer’s disease. Imaging of microtubules in vivo using positron emission tomography (PET) could provide valuable information on their role in the development of disease pathogenesis and aid in improving therapeutic regimens. We developed [11C]MPC-6827, the first brain-penetrating PET radiotracer to image microtubules in vivo in the mouse brain. The aim of the present study was to assess the reproducibility of [11C]MPC-6827 PET imaging in non-human primate brains. Two dynamic 0–120 min PET/CT imaging scans were performed in each of four healthy male cynomolgus monkeys approximately one week apart. Time activity curves (TACs) and standard uptake values (SUVs) were determined for whole brains and specific regions of the brains and compared between the “test” and “retest” data. [11C]MPC-6827 showed excellent brain uptake with good pharmacokinetics in non-human primate brains, with significant correlation between the test and retest scan data (r = 0.77, p = 0.023). These initial evaluations demonstrate the high translational potential of [11C]MPC-6827 to image microtubules in the brain in vivo in monkey models of neurological and psychiatric diseases.


2015 ◽  
Vol 123 (3) ◽  
pp. 642-653 ◽  
Author(s):  
Isabel Martins ◽  
Paulina Carvalho ◽  
Martin G. de Vries ◽  
Armando Teixeira-Pinto ◽  
Steven P. Wilson ◽  
...  

Abstract Background: Noradrenaline reuptake inhibitors are known to produce analgesia through a spinal action but they also act in the brain. However, the action of noradrenaline on supraspinal pain control regions is understudied. The authors addressed the noradrenergic modulation of the dorsal reticular nucleus (DRt), a medullary pronociceptive area, in the spared nerve injury (SNI) model of neuropathic pain. Methods: The expression of the phosphorylated cAMP response element-binding protein (pCREB), a marker of neuronal activation, was evaluated in the locus coeruleus and A5 noradrenergic neurons (n = 6 rats/group). pCREB was studied in noradrenergic DRt-projecting neurons retrogradely labeled in SNI animals (n = 3). In vivo microdialysis was used to measure noradrenaline release in the DRt on nociceptive stimulation or after DRt infusion of clonidine (n = 5 to 6 per group). Pharmacology, immunohistochemistry, and western blot were used to study α-adrenoreceptors in the DRt (n = 4 to 6 per group). Results: pCREB expression significantly increased in the locus coeruleus and A5 of SNI animals, and most noradrenergic DRt-projecting neurons expressed pCREB. In SNI animals, noradrenaline levels significantly increased on pinprick (mean ± SD, 126 ± 14%; P = 0.025 vs. baseline) and acetone stimulation (mean ± SD, 151 ± 12%; P < 0.001 vs. baseline), and clonidine infusion showed decreased α2-mediated inhibitory function. α1-adrenoreceptor blockade decreased nociceptive behavioral responses in SNI animals. α2-adrenoreceptor expression was not altered. Conclusions: Chronic pain induces brainstem noradrenergic activation that enhances descending facilitation from the DRt. This suggests that antidepressants inhibiting noradrenaline reuptake may enhance pain facilitation from the brain, counteracting their analgesic effects at the spinal cord.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1929 ◽  
Author(s):  
Salman Ul Islam ◽  
Adeeb Shehzad ◽  
Muhammad Bilal Ahmed ◽  
Young Sup Lee

Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.


2020 ◽  
Vol 1 (5) ◽  
pp. 385-389
Author(s):  
Sophie V. Morse ◽  
Tamara Boltersdorf ◽  
Tiffany G. Chan ◽  
Felicity N. E. Gavins ◽  
James J. Choi ◽  
...  

Targeted imaging agent labels activated microglia when delivered into the brain with focused ultrasound and microbubbles – a tool to investigate inflammation in neurological disorders.


2019 ◽  
Vol 20 (12) ◽  
pp. 2884 ◽  
Author(s):  
Sefan Asamitsu ◽  
Masayuki Takeuchi ◽  
Susumu Ikenoshita ◽  
Yoshiki Imai ◽  
Hirohito Kashiwagi ◽  
...  

The most common form of DNA is a right-handed helix or the B-form DNA. DNA can also adopt a variety of alternative conformations, non-B-form DNA secondary structures, including the DNA G-quadruplex (DNA-G4). Furthermore, besides stem-loops that yield A-form double-stranded RNA, non-canonical RNA G-quadruplex (RNA-G4) secondary structures are also observed. Recent bioinformatics analysis of the whole-genome and transcriptome obtained using G-quadruplex–specific antibodies and ligands, revealed genomic positions of G-quadruplexes. In addition, accumulating evidence pointed to the existence of these structures under physiologically- and pathologically-relevant conditions, with functional roles in vivo. In this review, we focused on DNA-G4 and RNA-G4, which may have important roles in neuronal function, and reveal mechanisms underlying neurological disorders related to synaptic dysfunction. In addition, we mention the potential of G-quadruplexes as therapeutic targets for neurological diseases.


2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Bhargy Sharma ◽  
Konstantin Pervushin

Drug formulations and suitable methods for their detection play a very crucial role in the development of therapeutics towards degenerative neurological diseases. For diseases such as Alzheimer’s disease, magnetic resonance imaging (MRI) is a non-invasive clinical technique suitable for early diagnosis. In this review, we will discuss the different experimental conditions which can push MRI as the technique of choice and the gold standard for early diagnosis of Alzheimer’s disease. Here, we describe and compare various techniques for administration of nanoparticles targeted to the brain and suitable formulations of nanoparticles for use as magnetically active therapeutic probes in drug delivery targeting the brain. We explore different physiological pathways involved in the transport of such nanoparticles for successful entry in the brain. In our lab, we have used different formulations of iron oxide nanoparticles (IONPs) and protein nanocages as contrast agents in anatomical MRI of an Alzheimer’s disease (AD) brain. We compare these coatings and their benefits to provide the best contrast in addition to biocompatibility properties to be used as sustainable drug-release systems. In the later sections, the contrast enhancement techniques in MRI studies are discussed. Examples of contrast-enhanced imaging using advanced pulse sequences are discussed with the main focus on important studies in the field of neurological diseases. In addition, T1 contrast agents such as gadolinium chelates are compared with the T2 contrast agents mainly made of superparamagnetic inorganic metal nanoparticles.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 1117-1123 ◽  
Author(s):  
Johnathan A Engh ◽  
Davneet S Minhas ◽  
Douglas Kondziolka ◽  
Cameron N Riviere

Abstract BACKGROUND: Intracerebral drug delivery using surgically placed microcatheters is a growing area of interest for potential treatment of a wide variety of neurological diseases, including tumors, neurodegenerative disorders, trauma, epilepsy, and stroke. Current catheter placement techniques are limited to straight trajectories. The development of an inexpensive system for flexible percutaneous intracranial navigation may be of significant clinical benefit. OBJECTIVE: Utilizing duty-cycled spinning of a flexible bevel-tipped needle, the authors devised and tested a means of achieving nonlinear trajectories for the navigation of catheters in the brain, which may be applicable to a wide variety of neurological diseases. METHODS: Exploiting the bending tendency of bevel-tipped needles due to their asymmetry, the authors devised and tested a means of generating curvilinear trajectories by spinning a needle with a variable duty cycle (ie, in on-off fashion). The technique can be performed using image guidance, and trajectories can be adjusted intraoperatively via joystick. Fifty-eight navigation trials were performed during cadaver testing to demonstrate the efficacy of the needle-steering system and to test its precision. RESULTS: The needle-steering system achieved a target acquisition error of 2 ± 1 mm, while demonstrating the ability to reach multiple targets from one burr hole using trajectories of varying curvature. CONCLUSION: The accuracy of the needle-steering system was demonstrated in a cadaveric model. Future studies will determine the safety of the device in vivo.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Kevin P. Lin ◽  
Aya M. Saleh ◽  
Kathryn R. Jacobson ◽  
Sarah Calve ◽  
Tamara L. Kinzer-Ursem

Background and Hypothesis: More than 600 neurological disorders have been identified, each with varying degrees of complexity and level of molecular understanding. However, current approaches are inadequate to capture the complex progressive nature of most neurological diseases. Therefore, developing techniques capable of probing the temporal dynamics of neuronal proteins in rodents, the most commonly used experimental models, is imperative for proper understanding of mechanisms driving neurological disorders. In this project, a protein labeling technique that enables selective labeling of newly synthesized proteins in vivo is utilized. In this technique, the non-canonical amino acid azidohomoalanine (AHA) is injected into mice to achieve global proteome labeling. AHA is an azide-tagged methionine (Met) analog that is incorporated into the nascent proteins using endogenous translational mechanisms. The azide functional group of AHA allows selective enrichment of the newly synthesized proteins from brain tissues via click-chemistry using alkynebearing affinity tags. This will be followed by detecting the AHA-labeled protein using mass spectrometry. We hypothesize that this labeling technique will help map the dynamics of the brain proteome in health and disease. This will ultimately provide insights into mechanisms underlying complex neurological diseases. Experimental Design or Project Methods: C57Bl/6 murine dams were injected with 0.1 mg/g AHA for two days. Brain tissues were harvested, homogenized and lysates were reacted with biotin-alkyne using copper-catalyzed click reaction. Biotinylated proteins were then enriched using NeutrAvidin beads and eluted by boiling in 2% SDS. Results: Tissues were fractionated into different subcellular components (cytosolic, nuclear, membrane, cytoskeletal, and extracellular matrix) using buffers of different stringency. Western blot analysis of clicked tissues using Streptavidin-fluorophore indicated effective incorporation of AHA into different cellular fractions of brain tissues. Additionally, the analysis of eluted proteins revealed successful enrichment and elution of AHA-labeled proteins. Conclusion and Potential Impact: Successful incorporation of AHA in nascent neuronal proteins can lead to a comprehensive quantitative approach for elucidating changes in the regulation of neuronal proteins in disease states.


Sign in / Sign up

Export Citation Format

Share Document