Novel approach for interlaboratory transfer of real-time PCR methods: detecting bovine meat and bone meal in feed

2009 ◽  
Vol 394 (5) ◽  
pp. 1423-1431 ◽  
Author(s):  
Marta Prado ◽  
Olivier Fumière ◽  
Ana Boix ◽  
Aline Marien ◽  
Gilbert Berben ◽  
...  
2004 ◽  
Vol 67 (3) ◽  
pp. 550-554 ◽  
Author(s):  
LUIS MENDOZA-ROMERO ◽  
EDWARD L. C. VERKAAR ◽  
PAUL H. SAVELKOUL ◽  
ARNOLD CATSBURG ◽  
HENK J. M. AARTS ◽  
...  

To control the spread of bovine spongiform encephalopathy, several DNA methods have been described for the detection of the species origin of meat and bone meal. Most of these methods are based on the amplification of a mitochondrial DNA segment. We have developed a semiquantitative method based on real-time PCR for detection of ruminant DNA, targeting an 88-bp segment of the ruminant short interspersed nuclear element Bov-A2. This method is specific for ruminants and is able to detect as little as 10 fg of bovine DNA. Autoclaving decreased the amount of detectable DNA, but positive signals were observed in feeding stuff containing 10% bovine material if this had not been rendered in accordance with the regulations, i.e., heated at 134°C for 3 instead of 20 min.


2010 ◽  
Vol 73 (6) ◽  
pp. 1090-1096 ◽  
Author(s):  
MICHAEL J. MYERS ◽  
DOROTHY E. FARRELL ◽  
CHRISTINE M. DEAVER ◽  
JACQULINE MASON ◽  
HEIDI L. SWAIM ◽  
...  

The capability of eight commercially available DNA extraction kits to extract bovine DNA originating in meat and bone meal from fortified feed was evaluated. Four different batches of bovine meat and bone meal (BMBM) were used for DNA extraction with the eight commercial DNA extraction kits. Within each kit, there were minimal differences in the batch-to-batch amounts of extracted DNA. There were differences between the kits in the amounts of DNA that could be extracted from the same amount of starting BMBM. These differences did not translate into differences in the amount of amplifiable DNA from BMBM-fortified dairy feed. Using a validated real-time PCR method, the kit yielding the highest amount extractable DNA was completely unable to yield a positive PCR result; one other kit was also unable to produce a positive PCR result from DNA extracted from BMBM-fortified feed. There was a complete lack of a correlation between the amount of bovine DNA isolated from BMBM by a given extraction kit compared with the relative amounts of DNA isolated from fortified animal feed as evidenced by the cycle threshold values generated using the real-time PCR method. These results demonstrate that extraction of DNA from processed animal protein is different for pure ingredients and fortified animal feeds. These results indicate that a method specifically developed using just animal-derived meat and bone meal may not yield a functional assay when used to detect animal tissues in complete animal feed.


2002 ◽  
Vol 65 (7) ◽  
pp. 1158-1165 ◽  
Author(s):  
S. LAHIFF ◽  
M. GLENNON ◽  
J. LYNG ◽  
T. SMITH ◽  
N. SHILTON ◽  
...  

We describe a real-time polymerase chain reaction (PCR) assay for the detection of bovine DNA extracted from meat and bone meal (MBM) samples. PCR primers were used to amplify a 271-bp region of the mitochondrial ATPase 8–ATPase 6 gene, and a fluorogenic probe (BOV1) labeled with a 5′ FAM reporter and a 3′ TAMRA quencher was designed to specifically detect bovine PCR product. The specificity of the BOV1 probe for the detection of the bovine PCR product was confirmed by Southern blot hybridization analysis of the probe with PCR products generated from ovine, porcine, and bovine genomic DNA extracted from blood and with PCR products generated from genomic DNA extracted from single-species laboratory scale rendered MBM samples. The specificity of the BOV1 probe was also evaluated in real-time PCR reactions including these genomic targets. Both methods demonstrated that the BOV1 probe was specific for the detection of bovine PCR product. The BOV1 probe had a detection limit of 0.0001% bovine material by Southern blot DNA probe hybridization analysis and a detection limit of 0.001% bovine material in the real-time PCR assay. Application of the real-time PCR assay to six industrial samples that had previously tested positive for the presence of bovine material with a conventional PCR assay yielded positive results with the real-time PCR assay for four samples.


2009 ◽  
Vol 72 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
SAIRA CAWTHRAW ◽  
GINNY C. SAUNDERS ◽  
TREVOR C. MARTIN ◽  
JASON SAWYER ◽  
OTTO WINDL ◽  
...  

A method for the detection and identification of “prohibited” mammalian or avian material in animal feed was developed and assessed through the analysis of DNA. A generic real-time PCR assay was designed to detect the presence of mammalian and avian mitochondrial DNA 16S rRNA genes in animal feed samples. Samples positive with this screening method were further investigated using identification assays to detect the 16S rRNA gene from bovine, ovine, porcine, and avian species and to determine whether the DNA originated from species whose material is prohibited from inclusion in farmed animal feed. An internal positive control was coamplified in the 16S real-time PCR assays to monitor PCR amplification efficiency and avoid potential false-negative results. Using vegetable-based feed standards spiked with meat and bone meal generated with a commercial rendering process, 0.1% meat and bone meal could be detected using the general and species-specific 16S assays. The species-specific assays had 100% specificity for the homologous target species. The 16S real-time PCR assays were evaluated alongside existing tests based on protein evaluation or microscopic examination for a wide range of commercial animal feed samples. In total, 111 (0.76%) of 14,678 samples examined contained prohibited material based on the results from at least one of these tests. However, most positive results did not represent noncompliance because they were associated with samples of pet food, which can legitimately contain material prohibited for use in food for farmed animals. The species-specific 16S assays confirmed the presence of prohibited material in 75% of the 111 samples, whereas the existing protein and microscope tests confirmed the presence of this material in 25 and 54% of the samples, respectively.


2014 ◽  
Vol 207 ◽  
pp. 133-137 ◽  
Author(s):  
Ersin Karataylı ◽  
Yasemin Çelik Altunoğlu ◽  
Senem Ceren Karataylı ◽  
Cihan Yurdaydın ◽  
A. Mithat Bozdayı

2013 ◽  
Vol 51 (1) ◽  
pp. 228-235 ◽  
Author(s):  
Joana Costa ◽  
Maria Beatriz P.P. Oliveira ◽  
Isabel Mafra

Author(s):  
Reza ZEIDABADINEZHAD ◽  
Hassan VATANDOOST ◽  
Mohammad Reza ABAI ◽  
Navid DINPARAST DJADID ◽  
Abbasali RAZ ◽  
...  

Background: Some mosquito species which belong to the Culex. pipiens complex are primary vectors for West Nile virus, Sindbis, Dirofilaria immitis, and many arboviruses. Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) gene of Cx. pipiens that is inherited, is one of the important threats for the efficacy of pyrethroids insecticides. Knockdown resistance (kdr) mutation, L1014F, is a well-defined mechanism of resistance to pyrethroids and DDT in many insect species. The aim of study was to determine the mechanisms of Insecticide resistance in this species Methods: Specimens of Cx. pipiens, the major vector of West Nile virus, were obtained in Tehran, Iran by collecting larvae from polluted wastewater in Qarchak of Tehran. In 2016 Insecticide susceptibility tests were performed according to WHO methods with deltamethrin 0.05%. We focused on determination of this point mutation in the VGSC gene of Cx. pipiens by Real-time PCR. Results: Our results revealed high levels of resistance to deltamethrin 0.05%. The lethal times i.e. LT50 and LT90 for deltamethrin were 2.1530 and 8.5117 h respectively. The result of Real-time PCR confirmed the presence of resistant genotype in all the members of tested population. This study is the first report on kdr genotyping of Cx. pipiens from Tehran and our results on the VGSC gene in position L1014F confirmed the TTA to TTT nucleotide change. Conclusion: This finding will provide a clue for management of insecticide resistance in mosquito which are vectors of arboviruses and decision for replacement of novel approach for vector control.


Sign in / Sign up

Export Citation Format

Share Document