Detection of Rendered Meat and Bone Meals by PCR Is Dependent on Animal Species of Origin and DNA Extraction Method

2010 ◽  
Vol 73 (6) ◽  
pp. 1090-1096 ◽  
Author(s):  
MICHAEL J. MYERS ◽  
DOROTHY E. FARRELL ◽  
CHRISTINE M. DEAVER ◽  
JACQULINE MASON ◽  
HEIDI L. SWAIM ◽  
...  

The capability of eight commercially available DNA extraction kits to extract bovine DNA originating in meat and bone meal from fortified feed was evaluated. Four different batches of bovine meat and bone meal (BMBM) were used for DNA extraction with the eight commercial DNA extraction kits. Within each kit, there were minimal differences in the batch-to-batch amounts of extracted DNA. There were differences between the kits in the amounts of DNA that could be extracted from the same amount of starting BMBM. These differences did not translate into differences in the amount of amplifiable DNA from BMBM-fortified dairy feed. Using a validated real-time PCR method, the kit yielding the highest amount extractable DNA was completely unable to yield a positive PCR result; one other kit was also unable to produce a positive PCR result from DNA extracted from BMBM-fortified feed. There was a complete lack of a correlation between the amount of bovine DNA isolated from BMBM by a given extraction kit compared with the relative amounts of DNA isolated from fortified animal feed as evidenced by the cycle threshold values generated using the real-time PCR method. These results demonstrate that extraction of DNA from processed animal protein is different for pure ingredients and fortified animal feeds. These results indicate that a method specifically developed using just animal-derived meat and bone meal may not yield a functional assay when used to detect animal tissues in complete animal feed.

2009 ◽  
Vol 72 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
SAIRA CAWTHRAW ◽  
GINNY C. SAUNDERS ◽  
TREVOR C. MARTIN ◽  
JASON SAWYER ◽  
OTTO WINDL ◽  
...  

A method for the detection and identification of “prohibited” mammalian or avian material in animal feed was developed and assessed through the analysis of DNA. A generic real-time PCR assay was designed to detect the presence of mammalian and avian mitochondrial DNA 16S rRNA genes in animal feed samples. Samples positive with this screening method were further investigated using identification assays to detect the 16S rRNA gene from bovine, ovine, porcine, and avian species and to determine whether the DNA originated from species whose material is prohibited from inclusion in farmed animal feed. An internal positive control was coamplified in the 16S real-time PCR assays to monitor PCR amplification efficiency and avoid potential false-negative results. Using vegetable-based feed standards spiked with meat and bone meal generated with a commercial rendering process, 0.1% meat and bone meal could be detected using the general and species-specific 16S assays. The species-specific assays had 100% specificity for the homologous target species. The 16S real-time PCR assays were evaluated alongside existing tests based on protein evaluation or microscopic examination for a wide range of commercial animal feed samples. In total, 111 (0.76%) of 14,678 samples examined contained prohibited material based on the results from at least one of these tests. However, most positive results did not represent noncompliance because they were associated with samples of pet food, which can legitimately contain material prohibited for use in food for farmed animals. The species-specific 16S assays confirmed the presence of prohibited material in 75% of the 111 samples, whereas the existing protein and microscope tests confirmed the presence of this material in 25 and 54% of the samples, respectively.


2004 ◽  
Vol 67 (3) ◽  
pp. 550-554 ◽  
Author(s):  
LUIS MENDOZA-ROMERO ◽  
EDWARD L. C. VERKAAR ◽  
PAUL H. SAVELKOUL ◽  
ARNOLD CATSBURG ◽  
HENK J. M. AARTS ◽  
...  

To control the spread of bovine spongiform encephalopathy, several DNA methods have been described for the detection of the species origin of meat and bone meal. Most of these methods are based on the amplification of a mitochondrial DNA segment. We have developed a semiquantitative method based on real-time PCR for detection of ruminant DNA, targeting an 88-bp segment of the ruminant short interspersed nuclear element Bov-A2. This method is specific for ruminants and is able to detect as little as 10 fg of bovine DNA. Autoclaving decreased the amount of detectable DNA, but positive signals were observed in feeding stuff containing 10% bovine material if this had not been rendered in accordance with the regulations, i.e., heated at 134°C for 3 instead of 20 min.


2007 ◽  
Vol 70 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
ANNA-CLARA RÖNNER ◽  
HANS LINDMARK

Campylobacter jejuni infection is a significant cause of foodborne gastroenteritis worldwide. Consumption and handling of poultry products is believed to be the primary risk factor for campylobacteriosis. Risk assessments require quantitative data, and C. jejuni is enumerated usually by direct plating, which sometimes allows growth of non-Campylobacter bacteria. The objective of the present study was to develop a quantitative real-time PCR method (q-PCR) for enumerating C. jejuni in chicken rinse without a culturing step. The procedure to obtain the template for the PCR assay involved (i) filtration of 10 ml of chicken rinse, (ii) centrifugation of the sample, and (iii) total DNA extraction from the pellet obtained using a commercial DNA extraction kit. The detection limit of the method was comparable to that for plating 100 μl of chicken rinse on modified charcoal cefoperazone deoxycholate agar, and the detection limit could be further improved 10-fold by concentrating the DNA eluate by ethanol precipitation. A close correlation for spiked chicken rinse was obtained for the results of the quantitative real-time PCR method and direct plating (r = 0.99). The coefficient of correlation for the methods was 0.87 when samples from chicken carcasses on the slaughter line were analyzed, whereas a lower correlation (r = 0.76) was obtained when samples from retail carcasses were analyzed. Greater variation in the proportion of dead and/or viable but not culturable Campylobacter types in the retail samples may explain the decreased correlation between the methods. Overall, the new method is simple and fast and the results obtained are closely correlated with those for direct plating for samples containing a low proportion of dead Campylobacter cells.


2018 ◽  
Vol 83 (2) ◽  
pp. 258-265 ◽  
Author(s):  
Lissandra Sousa Dalsecco ◽  
Rafael Melo Palhares ◽  
Pollyana Carvalho Oliveira ◽  
Lilian Viana Teixeira ◽  
Marcela Gonçalves Drummond ◽  
...  

2002 ◽  
Vol 65 (7) ◽  
pp. 1158-1165 ◽  
Author(s):  
S. LAHIFF ◽  
M. GLENNON ◽  
J. LYNG ◽  
T. SMITH ◽  
N. SHILTON ◽  
...  

We describe a real-time polymerase chain reaction (PCR) assay for the detection of bovine DNA extracted from meat and bone meal (MBM) samples. PCR primers were used to amplify a 271-bp region of the mitochondrial ATPase 8–ATPase 6 gene, and a fluorogenic probe (BOV1) labeled with a 5′ FAM reporter and a 3′ TAMRA quencher was designed to specifically detect bovine PCR product. The specificity of the BOV1 probe for the detection of the bovine PCR product was confirmed by Southern blot hybridization analysis of the probe with PCR products generated from ovine, porcine, and bovine genomic DNA extracted from blood and with PCR products generated from genomic DNA extracted from single-species laboratory scale rendered MBM samples. The specificity of the BOV1 probe was also evaluated in real-time PCR reactions including these genomic targets. Both methods demonstrated that the BOV1 probe was specific for the detection of bovine PCR product. The BOV1 probe had a detection limit of 0.0001% bovine material by Southern blot DNA probe hybridization analysis and a detection limit of 0.001% bovine material in the real-time PCR assay. Application of the real-time PCR assay to six industrial samples that had previously tested positive for the presence of bovine material with a conventional PCR assay yielded positive results with the real-time PCR assay for four samples.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190668 ◽  
Author(s):  
Maria Doroteia Campos ◽  
Vera Valadas ◽  
Catarina Campos ◽  
Laura Morello ◽  
Luca Braglia ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Beatrice Barda ◽  
Christian Schindler ◽  
Rahel Wampfler ◽  
Shaali Ame ◽  
Said M. Ali ◽  
...  

Abstract Background Diagnosis of soil-transmitted helminths (STHs) in developing countries is commonly based on microscopic detection of eggs in stool samples, using the Kato-Katz (KK) method, which has a poor sensitivity for detecting light intensity infections. We compared the performance of the KK method and real-time PCR in the framework of a randomized trial, which evaluated four novel treatments against Trichuris trichiura and concomitant STH infections. Results Two stool samples obtained from 320 participants were examined at baseline and follow-up with quadruplicate KK and PCR analyses of one of the two samples using “bead-beating” for DNA extraction. At follow-up, 80 samples were negative according to both PCR and KK and 173 were positive with both methods for any of the STHs. Relative to PCR, the calculated sensitivity of KK at follow-up was 83.6%, 43.0% and 53.8% for T. trichiura, for hookworm and for Ascaris lumbricoides, respectively. The sensitivity of PCR compared with KK at this time point was 89.1% for T. trichiura, 72.7% for hookworm and 87.5% for A. lumbricoides. Cure rates (CRs) for T. trichiura and A. lumbricoides were slightly lower with the PCR method. For hookworm CRs with KK were mostly significantly lower, namely 36.7%, 91.1%, 72.2% and 77.8% for moxidectin, moxidectin in combination with tribendimidine, moxidectin in combination with albendazole and albendazole in combination with oxantel pamoate, respectively, whereas with PCR the CRs were 8.3%, 82.6%, 37.1% and 57.1%, respectively. Conclusions In conclusion, a single real-time PCR is as sensitive as quadruplicate KK for T. trichiura and A. lumbricoides detection but more sensitive for hookworm, which has an influence on the estimated treatment efficacy. PCR method with DNA extraction using the “bead-beating protocol” should be further promoted in endemic areas and laboratories that can afford the needed equipment. The study is registered at ISRCTN (no. 20398469).


2009 ◽  
Vol 394 (5) ◽  
pp. 1423-1431 ◽  
Author(s):  
Marta Prado ◽  
Olivier Fumière ◽  
Ana Boix ◽  
Aline Marien ◽  
Gilbert Berben ◽  
...  

2005 ◽  
Vol 68 (12) ◽  
pp. 2651-2655 ◽  
Author(s):  
HAILE F. YANCY ◽  
ANUJA MOHLA ◽  
DOROTHY E. FARRELL ◽  
MICHAEL J. MYERS

A rapid PCR-based analytical method for detection of animal-derived materials in complete feed was developed. Using a commercially available DNA forensic kit for the extraction of DNA from animal feed, a sensitive method was developed that was capable of detecting as little as 0.03% bovine meat and bone meal in complete feed in under 8 h of total assay time. The reduction in assay time was accomplished by reducing the DNA extraction time to 2 h and using the simpler cleanup procedure of the kit. Assay sensitivity can be increased to 0.006% by increasing the DNA extraction time to an overnight incubation of approximately 16 h. Examination of dairy feed samples containing either bovine meat and bone meal, porcine meat and bone meal, or lamb meal at a level of 0.1% (wt/wt basis) suggested that this method may be suitable for regulatory uses. The adoption of this commercially available kit for use with animal feeds yields an assay that is quicker and simpler to perform than a previously validated assay for the detection of animal proteins in animal feed.


Sign in / Sign up

Export Citation Format

Share Document