scholarly journals Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS

2020 ◽  
Vol 412 (15) ◽  
pp. 3765-3777 ◽  
Author(s):  
Tobias Lange ◽  
Andreas Thomas ◽  
Katja Walpurgis ◽  
Mario Thevis
2018 ◽  
Vol 410 (14) ◽  
pp. 3315-3323 ◽  
Author(s):  
Ricardo Neto ◽  
Andrew Gooley ◽  
Michael C. Breadmore ◽  
Emily F. Hilder ◽  
Florian Lapierre

2012 ◽  
Vol 66 ◽  
pp. 298-305 ◽  
Author(s):  
Rayane Mohamed ◽  
Laura Mercolini ◽  
Suzanne Cuennet-Cosandey ◽  
Jacques Chavent ◽  
Maria Augusta Raggi ◽  
...  

2018 ◽  
Vol 410 (17) ◽  
pp. 4235-4235
Author(s):  
Ricardo Neto ◽  
Andrew Gooley ◽  
Michael C. Breadmore ◽  
Emily F. Hilder ◽  
Florian Lapierre

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1500
Author(s):  
Kristina A. Malsagova ◽  
Alexander A. Stepanov ◽  
Arthur T. Kopylov ◽  
Dmitry V. Enikeev ◽  
Natalia V. Potoldykova ◽  
...  

Dried blood spot (DBS) technology has become a promising utility for the transportation and storage of biological fluids aimed for the subsequent clinical analysis. The basis of the DBS method is the adsorption of the components of a biological sample onto the surface of a membrane carrier, followed by drying. After drying, the molecular components of the biosample (nucleic acids, proteins, and metabolites) can be analyzed using modern omics, immunological, or genomic methods. In this work, we investigated the safety of proteins on a membrane carrier by tryptic components over time and at different temperatures (+4, 0, 25 °C) and storage (0, 7, 14, and 35 days). It was shown that the choice of a protocol for preliminary sample preparation for subsequent analytical molecular measurements affects the quality of the experimental results. The protocol for preliminary preparation of a biosample directly in a membrane carrier is preferable compared to the protocol with an additional stage of elution of molecular components before the sample preparation procedures. It was revealed that the composition of biosamples remains stable at a temperature of −20 and +4 °C for 35 days of storage, and at +25 °C for 14 days.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1532
Author(s):  
Jeffrey Yim ◽  
Olivia Yau ◽  
Darwin F. Yeung ◽  
Teresa S. M. Tsang

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the galactosidase A (GLA) gene that result in deficient galactosidase A enzyme and subsequent accumulation of glycosphingolipids throughout the body. The result is a multi-system disorder characterized by cutaneous, corneal, cardiac, renal, and neurological manifestations. Increased left ventricular wall thickness represents the predominant cardiac manifestation of FD. As the disease progresses, patients may develop arrhythmias, advanced conduction abnormalities, and heart failure. Cardiac biomarkers, point-of-care dried blood spot testing, and advanced imaging modalities including echocardiography with strain imaging and magnetic resonance imaging (MRI) with T1 mapping now allow us to detect Fabry cardiomyopathy much more effectively than in the past. While enzyme replacement therapy (ERT) has been the mainstay of treatment, several promising therapies are now in development, making early diagnosis of FD even more crucial. Ongoing initiatives involving artificial intelligence (AI)-empowered interpretation of echocardiographic images, point-of-care dried blood spot testing in the echocardiography laboratory, and widespread dissemination of point-of-care ultrasound devices to community practices to promote screening may lead to more timely diagnosis of FD. Fabry disease should no longer be considered a rare, untreatable disease, but one that can be effectively identified and treated at an early stage before the development of irreversible end-organ damage.


2021 ◽  
Vol 136 ◽  
pp. 104739
Author(s):  
Ranya Mulchandani ◽  
Ben Brown ◽  
Tim Brooks ◽  
Amanda Semper ◽  
Nicholas Machin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amelia E. Sancilio ◽  
Richard T. D’Aquila ◽  
Elizabeth M. McNally ◽  
Matthew P. Velez ◽  
Michael G. Ison ◽  
...  

AbstractThe spike protein of SARS-CoV-2 engages the human angiotensin-converting enzyme 2 (ACE2) receptor to enter host cells, and neutralizing antibodies are effective at blocking this interaction to prevent infection. Widespread application of this important marker of protective immunity is limited by logistical and technical challenges associated with live virus methods and venous blood collection. To address this gap, we validated an immunoassay-based method for quantifying neutralization of the spike-ACE2 interaction in a single drop of capillary whole blood, collected on filter paper as a dried blood spot (DBS) sample. Samples are eluted overnight and incubated in the presence of spike antigen and ACE2 in a 96-well solid phase plate. Competitive immunoassay with electrochemiluminescent label is used to quantify neutralizing activity. The following measures of assay performance were evaluated: dilution series of confirmed positive and negative samples, agreement with results from matched DBS-serum samples, analysis of results from DBS samples with known COVID-19 status, and precision (intra-assay percent coefficient of variation; %CV) and reliability (inter-assay; %CV). Dilution series produced the expected pattern of dose–response. Agreement between results from serum and DBS samples was high, with concordance correlation = 0.991. Analysis of three control samples across the measurement range indicated acceptable levels of precision and reliability. Median % surrogate neutralization was 46.9 for PCR confirmed convalescent COVID-19 samples and 0.1 for negative samples. Large-scale testing is important for quantifying neutralizing antibodies that can provide protection against COVID-19 in order to estimate the level of immunity in the general population. DBS provides a minimally-invasive, low cost alternative to venous blood collection, and this scalable immunoassay-based method for quantifying inhibition of the spike-ACE2 interaction can be used as a surrogate for virus-based assays to expand testing across a wide range of settings and populations.


Sign in / Sign up

Export Citation Format

Share Document