Effects of Nitrite Exposure on Acid–Base Balance, Respiratory Protein, and Ion Concentrations of Giant Freshwater Prawn Macrobrachium rosenbergii at Low pH

1997 ◽  
Vol 33 (3) ◽  
pp. 290-297 ◽  
Author(s):  
J.-C. Chen ◽  
Y. Lee
2015 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B Mather ◽  
Peter J Prentis

Osmoregulation and systemic acid-base balance in decapod crustaceans are largely controlled by a set of transport-related enzymes including carbonic anhydrase (CA), Na + /K + -ATPase (NKA) and V-type- H + -ATPase (HAT). Variable pH levels and changes in osmotic pressure can have a significant impact on the physiology and behaviour of crustaceans. Therefore, it is crucial to understand the mechanisms via which an animal can maintain its internal pH balance and regulate the movement of ions into and out of its cells. Here, we examined expression patterns of the cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of the freshwater crayfish Cherax quadricarinatus. Expression levels of the genes were measured at three pH levels, pH 6.2, 7.2 (control) and 8.2 over a 24 hour period. All genes showed significant differences in expression levels, either among pH treatments or over time. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer to these treatments. Expression increased in low pH after 12 h, and reached their maximum level by 24 h. The membrane-associated form CAg showed changes in expression levels more quickly than CAc. Expression increased for CAg at 6 h post transfer at both low and high pH conditions, but expression remained elevated only at low pH (6.2) at the end of the experiment. Expression of CqNKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h post transfer to the low pH conditions and remained significantly elevated throughout the experiment. The only difference in expression between the two genes was that HAT expression decreased significantly 24 h post transfer to high pH conditions. Overall, our data suggest that CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish. Further research should examine the physiological underpinnings of these changes in expression to better understand systemic acid/base balance in freshwater crayfish.


1982 ◽  
Vol 60 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
J. H. Booth ◽  
G. F. Jansz ◽  
G. F. Holeton

A review of pertinent literature is provided. Previous research showed that fish exposed to sublethal environmental acidification have reduced blood pH, plasma [HCO3−], and [Cl−] and increased plasma [K+]. Simultaneous sampling from blood and water was used to characterize changes in Cl−, K+, and acid–base regulation in rainbow trout during a 5-day exposure to pH 4 followed by a 24-h recovery period at pH 7. At pH 4, there was a continuous loss of Cl− (49.8 μmol/kg per hour), and K+ (23.0 μmol/kg per hour) to the water. Blood ion concentrations did not change in a corresponding manner. Blood pH and plasma [HCO3−] decreased continuously owing to a net uptake of acid from the water. Recovery at pH 7 involved uptake of Cl− from, and loss of K+ to, the water. Plasma [K+] returned to normal but there was no significant change in plasma [Cl−] during this 24-h period. Internal acid–base parameters recovered much more quickly owing to a net excretion of acid into the water. The more rapid recovery of acid–base balance suggests that branchial acid–base and ionoregulatory mechanisms may be only loosely linked. The irregular changes in blood ion concentrations indicate that considerable ionic and osmotic exchanges between the plasma, the remainder of the extracellular space, and the intracellular space must result from exposure to pH 4.


1979 ◽  
Vol 57 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Ailsa Goulding ◽  
M. F. Broom

1. The effects of disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP) and colchicine on acid-base balance were examined in intact and nephrectomized rats. 2. Both drugs increased extracellular hydrogen ion concentrations and depressed extracellular bicarbonate concentrations in nephrectomized rats compared with controls but did not alter these parameters in intact animals. 3. Intracellular hydrogen ion concentrations in the skeletal muscle of nephrectomized rats given EHDP were higher than those of control animals. 4. It is postulated that colchicine and EHDP inhibit skeletal buffering of non-volatile acids produced endogenously in nephrectomized rats.


2021 ◽  
Vol 22 (1) ◽  
pp. 193-203
Author(s):  
A.A. Bogdanov ◽  
An.A. Bogdanov

Tumor acidosis affects every stage of cancer development, from dysplasia to full-blown metastatic disease. Survival strategies of malignant cells in an acidic microenvironment and pH gradient inversion promote resistance to chemotherapy, radiotherapy and immunotherapy, and suppress the antitumor immune response. It is necessary to consider the low pH of the microenvironment both when diagnosing and when choosing the most optimal treatment regimen. The development of methods for non-invasive measurement of tumor pH, methods for direct and indirect correction of acidosis, new pH-activated and pH-targeted drugs is required. In this work, we consider some aspects related to the altered acid-base state of the tumor, which may be significant for the clinician.


2015 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B Mather ◽  
Peter J Prentis

Osmoregulation and systemic acid-base balance in decapod crustaceans are largely controlled by a set of transport-related enzymes including carbonic anhydrase (CA), Na + /K + -ATPase (NKA) and V-type- H + -ATPase (HAT). Variable pH levels and changes in osmotic pressure can have a significant impact on the physiology and behaviour of crustaceans. Therefore, it is crucial to understand the mechanisms via which an animal can maintain its internal pH balance and regulate the movement of ions into and out of its cells. Here, we examined expression patterns of the cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of the freshwater crayfish Cherax quadricarinatus. Expression levels of the genes were measured at three pH levels, pH 6.2, 7.2 (control) and 8.2 over a 24 hour period. All genes showed significant differences in expression levels, either among pH treatments or over time. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer to these treatments. Expression increased in low pH after 12 h, and reached their maximum level by 24 h. The membrane-associated form CAg showed changes in expression levels more quickly than CAc. Expression increased for CAg at 6 h post transfer at both low and high pH conditions, but expression remained elevated only at low pH (6.2) at the end of the experiment. Expression of CqNKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h post transfer to the low pH conditions and remained significantly elevated throughout the experiment. The only difference in expression between the two genes was that HAT expression decreased significantly 24 h post transfer to high pH conditions. Overall, our data suggest that CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish. Further research should examine the physiological underpinnings of these changes in expression to better understand systemic acid/base balance in freshwater crayfish.


2018 ◽  
Vol 29 (1) ◽  
pp. 103-112
Author(s):  
Gunzo Kawamura ◽  
◽  
Teodora Bagarinao ◽  
Kian Yong Annita Seok ◽  
Siti Narasidah Noor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document