Transient Postnatal Heart Failure Caused by Noncompaction of the Right Ventricular Myocardium

2004 ◽  
Vol 26 (4) ◽  
pp. 452-454 ◽  
Author(s):  
J. Hruda ◽  
M.A. Sobotka-Plojhar ◽  
W.P.F. Fetter
2021 ◽  
pp. 030098582110425
Author(s):  
Teresa Southard ◽  
Kathleen Kelly ◽  
Anibal G. Armien

A retrospective study of guinea pigs submitted for necropsy revealed intracytoplasmic inclusions in the cardiomyocytes of 26 of 30 animals. The inclusions were found with approximately the same frequency in male and female guinea pigs and were slightly more common in older animals. In most cases, the animals did not have clinical signs or necropsy findings suggestive of heart failure, and the cause of death or reason for euthanasia was attributed to concurrent disease processes. However, the 4 guinea pigs with the highest inclusion body burden all had pulmonary edema, sometimes with intra-alveolar hemosiderin-laden macrophages, suggestive of heart failure. The inclusions were found in both the left and right ventricular myocardium, mainly in the papillary muscles, but were most common in the right ventricular free wall. No inclusions were detected in the atrial myocardium or in skeletal muscle. The inclusions did not stain with Congo red or periodic acid–Schiff. Electron microscopy revealed dense aggregates of disorganized myofilaments and microtubules that displaced and compressed the adjacent organelles. By immunohistochemistry, there was some scattered immunoreactivity for desmin and actin at the periphery of the inclusions and punctate actin reactivity within the aggregates. The inclusions did not react with antibodies to ubiquitin or cardiac myosin, but were variably reactive for alpha B crystallin, a small heat shock chaperone protein. The inclusions were interpreted as evidence of impaired proteostasis.


2005 ◽  
Vol 15 (4) ◽  
pp. 434-436 ◽  
Author(s):  
Dursun Alehan ◽  
Omer Faruk Dogan

Ventricular noncompaction is a rare unclassified cardiomyopathy occurring because of arrest of the normal intrauterine compaction of the loose luminal component of the ventricular myocardium. There is limited data regarding its diagnosis and outcome in children. It is recognised, however, that right ventricular involvement is extremely rare. We report a case in which only the right ventricular myocardium was noncompacted, a situation which led to heart failure soon after birth.


2019 ◽  
Vol 72 (8) ◽  
pp. 1491-1493
Author(s):  
Viktor P. Boriak ◽  
Svitlana V. Shut’ ◽  
Tetiana A. Trybrat ◽  
Olena V. Filatova

Introduction: In recent years, COPD is observed as not an isolated, but an associated pathology, in particular, concurrent with metabolic syndrome. The aim of the research is to identify the differences in changes of the rheopulmonography parameters (RPG) depending on the presence of hypertrophy or atrophy of the right ventricular myocardium in patients with COPD concurrent with metabolic syndrome.. Materials and methods: We studied changes in rheopulmonography (RPG) in 145 patients with chronic obstructive pulmonary disease (COPD) concurrent with metabolic syndrome. Results: We detected precapillary hypertension of the pulmonary circulation in patients with right ventricular myocardial hypertrophy: anacrotism serration; flattened peak of the systolic wave; decreased Vcp; high placement of incisura; horizontal course of catacrotism; decreased amplitude of the systolic wave (in this case, due to a greater increase in the resistance of the blood flow in the pulmonary vessels than the decreased impact volume of the right ventricle); prolonged Q-a (in this group of patients, it depends more on hypertension of the pulmonary circulation than on the reduction of contractile function of the myocardium). In atrophy of the right ventricular myocardium, the following changes in the RPG were revealed: decreased systolic wave at its dramatic rise; prolonged Q-a (in this case, due to the weakened heart contraction); Vmax reduction (it reflects the reduction of myocardial contractility); in hypertrophy of the myocardium, Vcp., unlike RPG, does not decrease, which is explained by the decrease in the pressure of the pulmonary circulation. Conclusions: We believe that these changes in RPG allow differentiating hypertrophy and right ventricular myocardial atrophy along with established diagnostic criteria, and can be used as markers for the diagnosis and treatment of COPD concurrent with metabolic syndrome.


2020 ◽  
pp. 13-17
Author(s):  
Dmitrii Aleksandrovich Lopyn ◽  
Stanislav Valerevich Rybchynskyi ◽  
Dmitrii Evgenevich Volkov

Currently the electrophysiological treatment options have been considered to be the most effective for many patients with arrhythmogenic cardiomyopathies, as well as in those with arrhythmias on the background of heart failure. Currently, the dependence of efficiency of the pacemakers on the location of the electrodes has been proven. In order to study the effect of a myocardial dysynchrony on the effectiveness of pacing depending on the location of the right ventricular electrode, an investigation has been performed. This study comprised the patients with a complete atrioventricular block, preserved ejection fraction of the left ventricle (more than 50 %), with no history of myocardial infarction, who were implanted with the two−chamber pacemaker. It has been established that the best results were achieved with a stimulation of the middle and lower septal zone of the right ventricle, the worst ones were obtained with a stimulation of its apex. It has been found that the dynamics of the magnitude of segmental strains and a global longitudinal strain coincided with the dynamics of other parameters of the pacemaker effectiveness, which indicated the pathogenetic value of myocardial dysynchrony in the progression of heart failure after implantation of the pacemaker. Therefore it could be concluded that the studying of myocardial mobility by determining a longitudinal strain for assessing the functional state of the myocardium and the effectiveness of pacing is highly advisable. It is emphasized that the use of the latest strains−dependent techniques for cardiac performance evaluation in the patients with bradyarrhythmia have a great potential to predict the development of chronic heart failure and to choose the optimal method of physiological stimulation of the heart. Key words: right ventricular lead, cardiac stimulation, myocardial dyssynchrony.


2020 ◽  
Author(s):  
Jagjit Khosla ◽  
Reshma Golamari ◽  
Alice Cai ◽  
Jamal Benson ◽  
Wilbert S Aronow ◽  
...  

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder resulting in fibrofatty replacement of the myocardium. Genetic mutations in genes encoding for desmosome proteins result in a ventricular myocardium prone to arrhythmias and heart failure. Although ARVC is known for a few decades, most of the outcomes in pregnancy are reported recently. Pregnancy leads to significant physiological changes with excess mechanical stress on the myocardium. All the retrospective studies suggest that pregnancy is well tolerated in these patients despite the high risk of arrhythmias and heart failure. Our review focuses on the most up-to-date evidence on the management of ARVC patients during the antepartum and postpartum period.


2017 ◽  
Vol 136 (3) ◽  
pp. 262-265 ◽  
Author(s):  
Turgut Karabag ◽  
Caner Arslan ◽  
Turab Yakisan ◽  
Aziz Vatan ◽  
Duygu Sak

ABSTRACT CONTEXT: Obstruction of the right ventricular outflow tract due to metastatic disease is rare. Clinical recognition of cardiac metastatic tumors is rare and continues to present a diagnostic and therapeutic challenge. CASE REPORT: We present the case of a patient who had severe respiratory insufficiency and whose clinical examinations revealed a giant tumor mass extending from the right ventricle to the pulmonary artery. We discuss the diagnostic and therapeutic options. CONCLUSION: In patients presenting with acute right heart failure, right ventricular masses should be kept in mind. Transthoracic echocardiography appears to be the most easily available, noninvasive, cost-effective and useful technique in making the differential diagnosis.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
E Majos ◽  
A Kraska ◽  
I Kowalik ◽  
E Smolis-Bak ◽  
H Szwed ◽  
...  

Abstract Background Assessment of the right ventricle (RV) in heart failure (HF) is challenging and requires applicable methods and parameters. Atrial fibrillation (AF) is a common and clinically significant arrhythmia in 30–50% of HF patients. Assessment of the RV function in patients with AF is problematic. Still little is known about RV function in HF and AF patients. The aim of the study was to assess RV function in HF with focus on AF patients. Methods Patients with HF of ischemic etiology, NYHA II-III, LVEF ≤40%, with AF and sinus rhythm (SR), underwent two- and three- dimensional echocardiography (2DE and 3DE) for assessment of the RV with use of multiple parameters. The RV was examined for: linear dimensions, end-diastolic and end-systolic areas adjusted to body surface area (RV EDA and RV ESA/BSA) and end-diastolic and end-systolic volumes adjusted to lean body mass (RV EDV and RV ESV/LBM) to reflect volume overload and in terms of right ventricular pressure (RVSP) as an index of pressure overload. RV systolic function was assessed with 2DE: tricuspid annular plane systolic excursion (TAPSE), right ventricular fractional area change (RV FAC), tricuspid lateral annular systolic velocity (s') and 3DE parameters: right ventricular ejection fraction (RVEF) and free wall right ventricular longitudinal strain (FW RVLS). Also, TAPSE/RVSP parameter was included. Results The study included 126 patients: 94 with AF and 32 with SR. Within the AF group 28 patients were treated medically, 41 had RV pacing (pacemaker or an implantable cardioverter-defibrillator, ICD) and 25 had cardiac resynchronisation therapy (CRT). In comparison with SR group AF patients had: larger RV inflow tract dimension (4.49±0.85 vs. 3.95±0.72 cm; p=0.0017), RV EDA/BSA (12.7±3.9 vs. 11.1±3.0 cm2/m2; p=0.0358) and RV ESA/BSA (8.0±3.0 vs. 6.7±2.4 cm2/m2; p=0.0226). Similarly, patients with AF had greater RV volumes in 3DE than patients with SR: RV EDV/LBM (1.82±0.60 vs. 1.61±0.38ml/kg, p=0.0267) and RV ESV/LBM (1.11±0.40 ml/kg vs. 0.81±0.28, p<0,0001). Also, in patients with AF right ventricular systolic pressure (RVSP) was higher (40.8±10.2 vs. 34.0±8.1 mmHg, p=0,0010). No differences in TAPSE and RVFAC were found but the relation TAPSE/RVSP was higher in AF than in SR group (0.51±0.21 vs. 0.65±0.24 cm/mmHg; p=0.0046). Also, in AF patients in comparison to SR group some parameters had worse values: s' (9.7±2.31 vs. 12.1±3.83, p=0.014), RVEF (37.2±7.3 vs. 48.2±7.5, p<0.0001 and FW RVLS (−18.3±4.6 vs. −23.9±4.23%, p<0,0001). Within the AF group no significant differences in studied variables depending on RV pacing or CRT were found. Conclusions Larger volumes and higher pressure overload of the RV were observed in patients with AF in comparison to SR. Systolic function of the RV seems to be more depressed in AF compared to SR patients with systolic heart failure. Further research in larger groups is required to identify the most applicable and valuable methods of RV evaluation.


2015 ◽  
Vol 309 (12) ◽  
pp. H2077-H2086 ◽  
Author(s):  
Nima Milani-Nejad ◽  
Benjamin D. Canan ◽  
Mohammad T. Elnakish ◽  
Jonathan P. Davis ◽  
Jae-Hoon Chung ◽  
...  

Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing ( n = 9) and failing ( n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae ( n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization ( P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment ( ktr) in both nonfailing and failing myocardium ( P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length ( P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/d t slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients.


Sign in / Sign up

Export Citation Format

Share Document