scholarly journals Clostridium perfringens Beta2 toxin forms highly cation-selective channels in lipid bilayers

Author(s):  
Roland Benz ◽  
Claudio Piselli ◽  
Cezarela Hoxha ◽  
Cornelia Koy ◽  
Michael O. Glocker ◽  
...  

AbstractClostridium perfringens is a potent producer of a variety of toxins. Well studied from these are five toxins (alpha, Beta (CPB), epsilon, iota and CPE) that are produced by seven toxinotype strains (A–G) of C. perfringens. Besides these toxins, C. perfringens produces also another toxin that causes necrotizing enterocolitis in piglets. This toxin termed consensus Beta2 toxin (cCPB2) has a molecular mass of 27,620 Da and shows only little homology to CPB and no one to the other toxins of C. perfringens. Its primary action on cells remained unknown to date. cCPB2 was heterogeneously expressed as fusion protein with GST in Escherichia coli and purified to homogeneity. Although cCPB2 does not exhibit the typical structure of beta-stranded pore-forming proteins and contains no indication for the presence of amphipathic alpha-helices we could demonstrate that cCPB2 is a pore-forming component with an extremely high activity in lipid bilayers. The channels have a single-channel conductance of about 700 pS in 1 M KCl and are highly cation-selective as judged from selectivity measurements in the presence of salt gradients. The high cation selectivity is caused by the presence of net negative charges in or near the channel that allowed an estimate of the channel size being about 1.4 nm wide. Our measurements suggest that the primary effect of cCPB2 is the formation of cation-selective channels followed by necrotic enteritis in humans and animals. We searched in databases for homologs of cCPB2 and constructed a cladogram representing the phylogenetic relationship to the next relatives of cCPB2.

2000 ◽  
Vol 68 (10) ◽  
pp. 5546-5551 ◽  
Author(s):  
Oleg Shatursky ◽  
Robert Bayles ◽  
Marianne Rogers ◽  
B. Helen Jost ◽  
J. Glenn Songer ◽  
...  

ABSTRACT Recombinant beta-toxin from Clostridium perfringenstype C was found to increase the conductance of bilayer lipid membranes (BLMs) by inducing channel activity. The channels exhibited a distribution of conductances within the range of 10 to 380 pS, with the majority of the channels falling into two categories of conductance at 110 and 60 pS. The radii of beta-toxin pores found for the conductance states of 110 and 60 pS were 12.7 and 11.1 Å, respectively. The single channels and the steady-state currents induced by beta-toxin across the BLMs exhibited ideal monovalent cation selectivity. Addition of divalent cations (Zn2+, Cd2+, or Mg2+) at a concentration of 2 mM increased the rate of beta-toxin insertion into BLMs and the single-channel conductance, while application of 5 mM Zn2+ to a beta-toxin-induced steady-state current decreased the inward current by approximately 45%. The mutation of arginine 212 of beta-toxin to aspartate, previously shown to increase the 50% lethal dose of beta-toxin for mice nearly 13-fold, significantly reduced the ability of beta-toxin to form channels. These data support the hypothesis that the lethal action of beta-toxin is based on the formation of cation-selective pores in susceptible cells.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 341 ◽  
Author(s):  
Roland Benz ◽  
Michel Popoff

One of the numerous toxins produced by Clostridium perfringens is Clostridium perfringens enterotoxin (CPE), a polypeptide with a molecular mass of 35.5 kDa exhibiting three different domains. Domain one is responsible for receptor binding, domain two is involved in hexamer formation and domain three has to do with channel formation in membranes. CPE is the major virulence factor of this bacterium and acts on the claudin-receptor containing tight junctions between epithelial cells resulting in various gastrointestinal diseases. The activity of CPE on Vero cells was demonstrated by the entry of propidium iodide (PI) in the cells. The entry of propidium iodide caused by CPE was well correlated with the loss of cell viability monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. CPE formed ion-permeable channels in artificial lipid bilayer membranes with a single-channel conductance of 620 pS in 1 M KCl. The single-channel conductance was not a linear function of the bulk aqueous salt concentration indicating that point-negative charges at the CPE channel controlled ion transport. This resulted in the high cation selectivity of the CPE channels, which suggested that anions are presumably not permeable through the CPE channels. The possible role of cation transport by CPE channels in disease caused by C. perfringens is discussed.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Trudi L. Bannam ◽  
Xu-Xia Yan ◽  
Paul F. Harrison ◽  
Torsten Seemann ◽  
Anthony L. Keyburn ◽  
...  

ABSTRACTThe pathogenesis of avian necrotic enteritis involves NetB, a pore-forming toxin produced by virulent avian isolates ofClostridium perfringenstype A. To determine the location and mobility of thenetBstructural gene, we examined a derivative of the tetracycline-resistant necrotic enteritis strain EHE-NE18, in whichnetBwas insertionally inactivated by the chloramphenicol and thiamphenicol resistance genecatP. Both tetracycline and thiamphenicol resistance could be transferred either together or separately to a recipient strain in plate matings. The separate transconjugants could act as donors in subsequent matings, which demonstrated that the tetracycline resistance determinant and thenetBgene were present on different conjugative elements. Large plasmids were isolated from the transconjugants and analyzed by high-throughput sequencing. Analysis of the resultant data indicated that there were actually three large conjugative plasmids present in the original strain, each with its own toxin or antibiotic resistance locus. Each plasmid contained a highly conserved 40-kb region that included plasmid replication and transfer regions that were closely related to the 47-kb conjugative tetracycline resistance plasmid pCW3 fromC. perfringens. The plasmids were as follows: (i) a conjugative 49-kb tetracycline resistance plasmid that was very similar to pCW3, (ii) a conjugative 82-kb plasmid that contained thenetBgene and other potential virulence genes, and (iii) a 70-kb plasmid that carried thecpb2gene, which encodes a different pore-forming toxin, beta2 toxin.IMPORTANCEThe anaerobic bacteriumClostridium perfringenscan cause an avian gastrointestinal disease known as necrotic enteritis. Disease pathogenesis is not well understood, although the plasmid-encoded pore-forming toxin NetB, is an important virulence factor. In this work, we have shown that the plasmid that carries thenetBgene is conjugative and has a 40-kb region that is very similar to replication and transfer regions found within each of the sequenced conjugative plasmids fromC. perfringens. We also showed that this strain contained two additional large plasmids that were also conjugative and carried a similar 40-kb region. One of these plasmids encoded beta2 toxin, and the other encoded tetracycline resistance. To our knowledge, this is the first report of a bacterial strain that carries three closely related but different independently conjugative plasmids. These results have significant implications for our understanding of the transmission of virulence and antibiotic resistance genes in pathogenic bacteria.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Xu-Xia Yan ◽  
Corrine J. Porter ◽  
Simon P. Hardy ◽  
David Steer ◽  
A. Ian Smith ◽  
...  

ABSTRACT Clostridium perfringens is an anaerobic bacterium that causes numerous important human and animal diseases, primarily as a result of its ability to produce many different protein toxins. In chickens, C. perfringens causes necrotic enteritis, a disease of economic importance to the worldwide poultry industry. The secreted pore-forming toxin NetB is a key virulence factor in the pathogenesis of avian necrotic enteritis and is similar to alpha-hemolysin, a β-barrel pore-forming toxin from Staphylococcus aureus. To address the molecular mechanisms underlying NetB-mediated tissue damage, we determined the crystal structure of the monomeric form of NetB to 1.8 Å. Structural comparisons with other members of the alpha-hemolysin family revealed significant differences in the conformation of the membrane binding domain. These data suggested that NetB may recognize different membrane receptors or use a different mechanism for membrane-protein interactions. Consistent with this idea, electrophysiological experiments with planar lipid bilayers revealed that NetB formed pores with much larger single-channel conductance than alpha-hemolysin. Channel conductance varied with phospholipid net charge. Furthermore, NetB differed in its ion selectivity, preferring cations over anions. Using hemolysis as a screen, we carried out a random-mutagenesis study that identified several residues that are critical for NetB-induced cell lysis. Mapping of these residues onto the crystal structure revealed that they were clustered in regions predicted to be required for oligomerization or membrane binding. Together these data provide an insight into the mechanism of NetB-mediated pore formation and will contribute to our understanding of the mode of action of this important toxin. IMPORTANCE Necrotic enteritis is an economically important disease of the worldwide poultry industry and is mediated by Clostridium perfringens strains that produce NetB, a β-pore-forming toxin. We carried out structural and functional studies of NetB to provide a mechanistic insight into its mode of action and to assist in the development of a necrotic enteritis vaccine. We determined the structure of the monomeric form of NetB to 1.8 Å, used both site-directed and random mutagenesis to identify key residues that are required for its biological activity, and analyzed pore formation by NetB and its substitution-containing derivatives in planar lipid bilayers.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2027
Author(s):  
Doaa Ibrahim ◽  
Tamer Ahmed Ismail ◽  
Eman Khalifa ◽  
Shaimaa A. Abd El-Kader ◽  
Dalia Ibrahim Mohamed ◽  
...  

Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds’ intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.


Anaerobe ◽  
2021 ◽  
pp. 102377
Author(s):  
Hiramoni Sarmah ◽  
Ritam Hazarika ◽  
Shantonu Tamuly ◽  
Pankaj Deka ◽  
Seeralan Manoharan ◽  
...  

Toxicon ◽  
2019 ◽  
Vol 158 ◽  
pp. S65
Author(s):  
Jin Zeng ◽  
Chenjie Ma ◽  
Fuyang Song ◽  
Guangcun Deng ◽  
Yong Li ◽  
...  

2005 ◽  
Vol 71 (7) ◽  
pp. 3911-3916 ◽  
Author(s):  
Mark G. Wise ◽  
Gregory R. Siragusa

ABSTRACT Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.


Sign in / Sign up

Export Citation Format

Share Document