scholarly journals Are disease-related pulmonary perfusion abnormalities detectable in COVID-19 patients? Suspicious findings in a lung perfusion SPECT performed for ruling out classical pulmonary embolism

2020 ◽  
Vol 47 (9) ◽  
pp. 2211-2213 ◽  
Author(s):  
Roberto Sciagrà ◽  
Federica Rubino ◽  
Danilo Malandrino ◽  
Nicoletta Bernardeschi ◽  
Alberto Moggi Pignone ◽  
...  
2020 ◽  
pp. 204589402098404
Author(s):  
Siyi Yuan ◽  
Huaiwu He ◽  
Yun Long ◽  
Yi Chi ◽  
Inéz Frerichs ◽  
...  

Background: Several animal studies have shown that regional lung perfusion could be effectively estimated by the hypertonic saline contrast electrical impedance tomography (EIT) method. Here, we reported an application of this method to dynamically assess regional pulmonary perfusion defect in a patient with acute massive pulmonary embolism. Case presentation: A 68-year-old man experienced sudden dyspnea and cardiac arrest during out-of-bed physical activity on the first day after partial mediastinal tumor resection. Acute pulmonary embolism (PE) was suspected due to acute enlargement of right heart and fixed inferior venous cava measured with bedside ultrasound. The computed tomography pulmonary angiography further confirmed large embolism in both left and right main pulmonary arteries and branches. The regional time impedance curves, which were obtained by a bolus of 10ml 10% NaCl through the central venous catheter, were then analyzed to quantitatively assess regional perfusion. Normal ventilation distribution with massive defects in regional perfusion in both lungs was observed, leading to a ventilation-perfusion mismatch and low oxygenation index (PaO2/FiO2=86 mmHg) at the first day of PE. The anticoagulation was performed with heparin, and the patient’s condition (such as shock, dyspnea, hypoxemia etc.), regional lung perfusion defect and ventilation-perfusion mismatch continuously improved in the following days. Conclusions: This case implies that EIT might have the potential to assess and monitor regional perfusion for rapid diagnosis of fatal PE in clinical practice.


2020 ◽  
Vol 30 (9) ◽  
pp. 4857-4864 ◽  
Author(s):  
Brieg Dissaux ◽  
Pierre-Yves Le Floch ◽  
Philippe Robin ◽  
David Bourhis ◽  
Francis Couturaud ◽  
...  

Author(s):  
Osayande Evbuomwan ◽  
Gerrit Engelbrecht ◽  
Melissa V. Bergman ◽  
Sello Mokwena ◽  
Oluwatosin A. Ayeni

Abstract Background The aim of this retrospective study is to assess the incidence and type of lung perfusion abnormalities in non-hospitalized patients diagnosed with mild COVID-19 infection after de-isolation. Data from 56 non-hospitalized patients diagnosed with COVID-19 infection referred to our nuclear medicine department from July–December 2020 for a perfusion only SPECT/CT study or a ventilation perfusion SPECT/CT study were collected. Images were assessed for the presence and type of perfusion defects. The CT component of the study was also assessed for the presence of mosaic attenuation and COVID pneumonia changes. Results Thirty-two (57.1%) cases had perfusion defects. There were 20 (35.7%) cases with defects in keeping with pulmonary embolism, 17 (30.4%) cases with defects associated with mosaic attenuation but not due to pulmonary embolism, and 6 (10.7%) of cases with defects due to pulmonary infiltrates from COVID pneumonia. A total of 24 (42.9%) cases had mosaic attenuation on CT, with 10 (17.9%) of them showing a pattern likely consistent with shunting on the perfusion images. Conclusion Lung perfusion abnormalities are a common finding in non-hospitalized COVID-19 patients with mild disease. They are usually either due to pulmonary embolism, parenchymal infiltrates, or other causes of mosaic attenuation related to, but not specific to the pathophysiology of COVID-19 infection. The value of VQ SPECT/CT imaging is also shown in this study, in detecting and differentiating the various types of perfusion abnormalities.


2020 ◽  
Vol 71 (2) ◽  
pp. 399-410
Author(s):  
Khaled Abdelghany ◽  
Noha Osman ◽  
Eman Geneidi ◽  
Hala Abou Senna ◽  
Ahmed Nasr ◽  
...  

TH Open ◽  
2021 ◽  
Vol 05 (01) ◽  
pp. e66-e72
Author(s):  
Lisette F. van Dam ◽  
Lucia J. M. Kroft ◽  
Menno V. Huisman ◽  
Maarten K. Ninaber ◽  
Frederikus A. Klok

Abstract Background Computed tomography pulmonary angiography (CTPA) is the imaging modality of choice for the diagnosis of acute pulmonary embolism (PE). With computed tomography pulmonary perfusion (CTPP) additional information on lung perfusion can be assessed, but its value in PE risk stratification is unknown. We aimed to evaluate the correlation between CTPP-assessed perfusion defect score (PDS) and clinical presentation and its predictive value for adverse short-term outcome of acute PE. Patients and Methods This was an exploratory, observational study in 100 hemodynamically stable patients with CTPA-confirmed acute PE in whom CTPP was performed as part of routine clinical practice. We calculated the difference between the mean PDS in patients with versus without chest pain, dyspnea, and hemoptysis and 7-day adverse outcome. Multivariable logistic regression analysis and likelihood-ratio test were used to assess the added predictive value of PDS to CTPA parameters of right ventricle dysfunction and total thrombus load, for intensive care unit admission, reperfusion therapy and PE-related death. Results We found no correlation between PDS and clinical symptoms. PDS was correlated to reperfusion therapy (n = 4 with 16% higher PDS, 95% confidence interval [CI]: 3.5–28%) and PE-related mortality (n = 2 with 22% higher PDS, 95% CI: 4.9–38). Moreover, PDS had an added predictive value to CTPA assessment for PE-related mortality (from Chi-square 14 to 19, p = 0.02). Conclusion CTPP-assessed PDS was not correlated to clinical presentation of acute PE. However, PDS was correlated to reperfusion therapy and PE-related mortality and had an added predictive value to CTPA-reading for PE-related mortality; this added value needs to be demonstrated in larger studies.


Author(s):  
Duc Minh Nguyen ◽  
Luong Duong Trong ◽  
Alistair L McEwan

Abstract Objective: Pulmonary embolism (PE) is an acute condition that blocks the perfusion to the lungs and is a common complication of Covid-19. However, PE is often not diagnosed in time, especially in the pandemic time due to complicated diagnosis protocol. In this study, a non-invasive, fast and efficient bioimpedance method with the EIT-based reconstruction approach is proposed to assess the lung perfusion reliably. Approach: Some proposals are presented to improve the sensitivity and accuracy for the bioimpedance method: (1) a new electrode configuration and focused pattern to help study deep changes caused by PE within each lung field separately, (2) a measurement strategy to compensate the effect of different boundary shapes and varied respiratory conditions on the perfusion signals and (3) an estimator to predict the lung perfusion capacity, from which the severity of PE can be assessed. The proposals were tested on the first-time simulation of PE events at different locations and degrees from segmental blockages to massive blockages. Different object boundary shapes and varied respiratory conditions were included in the simulation to represent for different populations in real measurements. Results: The correlation between the estimator and the perfusion was very promising (R = 0.91, errors < 6%). The measurement strategy with the proposed configuration and pattern has helped stabilize the estimator to non-perfusion factors such as the boundary shapes and varied respiration conditions (3-5% errors). Significance: This promising preliminary result has demonstrated the proposed bioimpedance method’s capability and feasibility, and might start a new direction for this application.


2014 ◽  
Vol 2014 (0) ◽  
pp. mmu019-mmu019 ◽  
Author(s):  
S. Spagnolo ◽  
L. Barbato ◽  
M. A. Grasso ◽  
U. F. Tesler

Sign in / Sign up

Export Citation Format

Share Document