scholarly journals CD4 + T cells are found within endemic Burkitt lymphoma and modulate Burkitt lymphoma precursor cell viability and expression of pathogenically relevant Epstein–Barr virus genes

Author(s):  
Semjon Sidorov ◽  
Lara Fux ◽  
Katja Steiner ◽  
Samyo Bounlom ◽  
Sabrina Traxel ◽  
...  

AbstractEndemic Burkitt lymphoma (eBL) is an aggressive B cell cancer characterized by an IgH/c-myc translocation and the harboring of Epstein–Barr virus (EBV). Evidence accumulates that CD4 + T cells might contribute to eBL pathogenesis. Here, we investigate the presence of CD4 + T cells in primary eBL tissue and their potential dichotomous impact on an EBV-infected pre-eBL cell model using ex vivo material and in vitro co-cultures. In addition, we establish a novel method to study the effect of IgH/c-myc translocation in primary B cells by employing a CRISPR/Cas9 knock-in approach to introduce and tag de novo translocation. We unprecedently document that CD4 + T cells are present in primary eBL tumor tissue. Furthermore, we demonstrate that CD4 + T cells on the one hand suppress eBL development by killing pre-eBL cells lacking IgH/c-myc translocation in vitro and on the other hand indirectly promote eBL development by inducing crucial EBV Latency III to Latency I switching in pre-eBL cells. Finally, we show that while the mere presence of an IgH/c-myc translocation does not suffice to escape CD4 + T-cell-mediated killing in vitro, the CD4 + T-cell-mediated suppression of EBV’s Latency III program in vivo may allow cells harboring an IgH/c-myc translocation and additional mutations to evade immune control and proliferate by means of deregulated c-myc activity, resulting in neoplasia. Thus, our study highlights the dichotomous effects of CD4 + T cells and the mechanisms involved in eBL pathogenesis, suggests mechanisms of their impact on eBL progression, and provides a novel in vitro model for further investigation of IgH/c-myc translocation.

Blood ◽  
2009 ◽  
Vol 114 (4) ◽  
pp. 807-815 ◽  
Author(s):  
Heather M. Long ◽  
Jianmin Zuo ◽  
Alison M. Leese ◽  
Nancy H. Gudgeon ◽  
Hui Jia ◽  
...  

Abstract Epstein-Barr virus (EBV)–specific T-cell preparations, generated by stimulating immune donor lymphocytes with the autologous virus-transformed B-lymphoblastoid cell line (LCL) in vitro, can be used to target EBV-positive malignancies. Although these preparations are enriched for EBV antigen–specific CD8+ T cells, most also contain a CD4+ T-cell population whose specificity is unknown. Here, we show that, although CD4+ T-cell clones derived from such cultures recognize HLA class II–matched LCLs but not mitogen-activated B lymphoblasts, many (1) do not map to any known EBV antigen, (2) can be raised from EBV-naive as well as EBV-immune persons, and (3) can recognize a broad range of human B lymphoma–derived cell lines irrespective of EBV genome status, providing those lines to express the relevant HLA class II–restricting allele. Importantly, such CD4+ clones not only produce IFNγ but are also cytotoxic and can control the outgrowth of HLA-matched lymphoma cells in cocultivation assays. We infer that such CD4+ T cells recognize cellular antigens that are preferentially up-regulated in EBV-transformed but not mitogen-activated B lymphoblasts and that are also expressed in a range of B-cell malignancies. Such antigens are therefore of potential value as targets for CD4+ T cell–based immunotherapy.


2000 ◽  
Vol 191 (10) ◽  
pp. 1649-1660 ◽  
Author(s):  
Christian Münz ◽  
Kara L. Bickham ◽  
Marion Subklewe ◽  
Ming L. Tsang ◽  
Ann Chahroudi ◽  
...  

The Epstein-Barr virus (EBV)-encoded nuclear antigen EBNA1 is critical for the persistence of the viral episome in replicating EBV-transformed human B cells. Therefore, all EBV-induced tumors express this foreign antigen. However, EBNA1 is invisible to CD8+ cytotoxic T lymphocytes because its Gly/Ala repeat domain prevents proteasome-dependent processing for presentation on major histocompatibility complex (MHC) class I. We now describe that CD4+ T cells from healthy adults are primed to EBNA1. In fact, among latent EBV antigens that stimulate CD4+ T cells, EBNA1 is preferentially recognized. We present evidence that the CD4+ response may provide a protective role, including interferon γ secretion and direct cytolysis after encounter of transformed B lymphocyte cell lines (B-LCLs). Dendritic cells (DCs) process EBNA1 from purified protein and from MHC class II–mismatched, EBNA1-expressing cells including B-LCLs. In contrast, B-LCLs and Burkitt's lymphoma lines likely present EBNA1 after endogenous processing, as their capacity to cross-present from exogenous sources is weak or undetectable. By limiting dilution, there is a tight correlation between the capacity of CD4+ T cell lines to recognize autologous B-LCL–expressing EBNA1 and DCs that have captured EBNA1. Therefore, CD4+ T cells can respond to the EBNA1 protein that is crucial for EBV persistence. We suggest that this immune response is initiated in vivo by DCs that present EBV-infected B cells, and that EBNA1-specific CD4+ T cell immunity be enhanced to prevent and treat EBV-associated malignancies.


1983 ◽  
Vol 157 (1) ◽  
pp. 173-188 ◽  
Author(s):  
F Hasler ◽  
H G Bluestein ◽  
N J Zvaifler ◽  
L B Epstein

T cells of patients with rheumatoid arthritis (RA) do not control the rate of B lymphoblast transformation induced by Epstein-Barr virus (EBV) as efficiently as T cells from healthy individuals; thus, lymphoblast cell lines are established more readily in RA lymphocytes in vitro after EBV infection. In the present experiments, we have asked whether this T cell regulation can be reproduced by lymphocytes. We found that normal T cells, activated in allogeneic or autologous mixed leukocyte reactions (MLR), produce lymphokines that inhibit in vitro EBV-induced B cell proliferation. Allogeneic MLR supernatants inhibited EBV-induced DNA synthesis 62 +/- 4% (mean +/- SE) at 10 d post-infection, whereas autologous MLR supernatants suppressed it 50 +/- 3%. RA T cell supernatants produced in an allogeneic MLR suppressed as well as normal T cell supernatants (64 +/- 5% inhibition). In contrast, supernatants from RA autologous MLR had little inhibitory activity. EBV-induced DNA synthesis at 10 d was reduced only 8 +/- 3%, compared with the 50 +/- 3% suppressive activity of normal autologous MLR supernatants. The magnitude of the proliferative responses in the autologous MLR regenerating the lymphokines was similar in the normal and RA populations. After depletion of adherent cells from the RA auto-MLR stimulators, supernatant inhibitory activities increased to normal levels (from 11 +/- 6 [SE] to 52 +/- 6% [SE]). The inhibitory factor involved in the regulation of in vitro EBV infection is a protein with a molecular weight of approximately 50,000. Its activity is eliminated by hearing at 56 degrees C and by exposure to acid at pH 2. The inhibitory activity is blocked by mixing the MLR supernatants with a polyvalent antisera or monoclonal antibodies specific for human gamma interferon. Gamma interferon produced by activating T cells in allo- or auto-MLR can reproduce T cell-mediated regulation of EBV-induced B cell proliferation, and the failure of RA auto-MLR to generate that lymphokine parallels the defective T cell regulation of EBV-induced B cell proliferation characteristic of RA lymphoid cells.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Loránd L. Kis ◽  
Natalija Gerasimčik ◽  
Daniel Salamon ◽  
Emma K. Persson ◽  
Noémi Nagy ◽  
...  

AbstractIn line with the B-lymphotropic nature of Epstein-Barr virus (EBV), the virus is present in several types of B-cell lymphomas. EBV expresses a different set of latent genes in the associated tumors, such as EBV nuclear antigen 1 (EBNA-1) and latent membrane proteins (LMPs; type II latency) in classical Hodgkin lymphomas (HLs). We previously reported that exposure of in vitro EBV-converted, HL-derived cell line KMH2-EBV to CD40-ligand and interleukin-4 (IL-4) induced the expression of LMP-1. Here, we show that exposure to IL-4 or IL-13 alone induced LMP-1 in the absence of EBNA-2. Induction of LMP-1 by IL-4 and IL-13 was mediated by the signal transducer signal transducer and activator of transcription 6 (STAT6) and a newly defined high-affinity STAT6-binding site in the LMP-1 promoter. IL-4 induced LMP-1 also in Burkitt lymphoma–derived lines and in tonsillar B cells infected with the EBNA-2–deficient EBV strain P3HR-1. Furthermore, coculture of EBV-carrying Burkitt lymphoma cells with activated CD4+ T cells resulted in the induction of LMP-1 in the absence of EBNA-2. Because Hodgkin/Reed-Sternberg cells are known to secrete IL-13, to have constitutively activated STAT6, and to be closely surrounded by CD4+ T cells, these mechanisms may be involved in the expression of LMP-1 in EBV-positive chronic HLs.


2001 ◽  
Vol 75 (8) ◽  
pp. 3740-3752 ◽  
Author(s):  
Sarah Nikiforow ◽  
Kim Bottomly ◽  
George Miller

ABSTRACT In immunodeficient hosts, Epstein-Barr virus (EBV) often induces extensive B-cell lymphoproliferative disease and lymphoma. Without effective in vitro immune surveillance, B cells infected by the virus readily form immortalized cell lines. In the regression assay, memory T cells inhibit the formation of foci of EBV-transformed B cells that follows recent in vitro infection by EBV. No one has yet addressed which T cell regulates the early proliferative phase of B cells newly infected by EBV. Using new quantitative methods, we analyzed T-cell surveillance of EBV-mediated B-cell proliferation. We found that CD4+ T cells play a significant role in limiting proliferation of newly infected, activated CD23+ B cells. In the absence of T cells, EBV-infected CD23+ B cells divided rapidly during the first 3 weeks after infection. Removal of CD4+ but not CD8+ T cells also abrogated immune control. Purified CD4+ T cells eliminated outgrowth when added to EBV-infected B cells. Thus, unlike the killing of EBV-infected lymphoblastoid cell lines, in which CD8+ cytolytic T cells play an essential role, prevention of early-phase EBV-induced B-cell proliferation requires CD4+ effector T cells.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3439-3447 ◽  
Author(s):  
Jerome E. Tanner ◽  
Caroline Alfieri

Epstein-Barr virus (EBV) acute infectious mononucleosis (AIM) is characterized by transient immunosuppression in vivo and increased T-cell apoptosis after ex vivo culture of AIM peripheral blood mononuclear cells. We undertook experiments to test whether EBV or purified virion envelope glycoprotein gp350 could contribute to Fas-mediated T-cell apoptosis. Our in vitro results indicate that EBV increased Fas expression in CD4+ T cells and Fas ligand (FasL) expression in B cells and macrophages. Purified gp350 was also shown to significantly increase CD95 expression in CD4+ T cells. When T-cell CD95 was cross-linked, EBV-stimulated T cells underwent apoptosis. The induction of T-cell CD95 by EBV followed by CD95 cross-linking with anti-CD95 monoclonal antibody resulted in a loss in the number of T cells responding to the T-cell mitogens, anti-CD3 antibody, and interleukin-2. These results indicate that, in addition to serving as a principal ligand for the attachment of virus to target cells, gp350 may also act as an immunomodulatory molecule that promotes T-cell apoptosis.


Blood ◽  
2002 ◽  
Vol 100 (5) ◽  
pp. 1755-1764 ◽  
Author(s):  
Andreas Moosmann ◽  
Naeem Khan ◽  
Mark Cobbold ◽  
Caroline Zentz ◽  
Henri-Jacques Delecluse ◽  
...  

Lymphoblastoid cell lines (LCLs) are human B cells latently infected and immortalized by Epstein-Barr virus (EBV). Presenting viral antigens, they efficiently induce EBV-specific T-cell responses in vitro. Analogous ways to generate T-cell cultures specific for other antigens of interest are highly desirable. Previously, we constructed a mini-EBV plasmid that consists of less than half the EBV genome, is unable to cause virus production, but still immortalizes B cells in vitro. Mini-EBV–immortalized B-cell lines (mini-LCLs) are efficiently produced by infection of B cells with viruslike particles carrying only mini-EBV DNA. Mini-EBV plasmids can be engineered to express an additional gene in immortalized B cells. Here we present a mini-EBV coding for a potent CD8+ T-cell antigen, the matrix phosphoprotein pp65 of human cytomegalovirus (CMV). By means of this pp65 mini-EBV, pp65-expressing mini-LCLs could be readily established from healthy donors in a one-step procedure. We used these pp65 mini-LCLs to reactivate and expand effector T cells from autologous peripheral blood cells in vitro. When generated from cytomegalovirus (CMV)–seropositive donors, these effector T-cell cultures displayed strong pp65-specific HLA-restricted cytotoxicity. A large fraction of CD8+ T cells with pp65 epitope specificity was present in such cultures, as demonstrated by direct staining with HLA/peptide tetramers. We conclude that the pp65 mini-EBV is an attractive tool for CMV-specific adoptive immunotherapy. Mini-EBVs could also facilitate the generation of T cells specific for various other antigens of interest.


2003 ◽  
Vol 198 (6) ◽  
pp. 903-911 ◽  
Author(s):  
Elisabeth Amyes ◽  
Chris Hatton ◽  
Damien Montamat-Sicotte ◽  
Nancy Gudgeon ◽  
Alan B. Rickinson ◽  
...  

The CD8+ T cell response to Epstein-Barr virus (EBV) is well characterized. Much less is known about the evolution of the CD4+ T cell response. Here we show that EBV stimulates a primary burst of effector CD4+ T cells and this is followed by a period of down-regulation. A small population of EBV-specific effector CD4+ T cells survives during the lifelong persistent phase of infection. The EBV-specific effector CD4+ T cells accumulate within a CD27+ CD28+ differentiation compartment during primary infection and remain enriched within this compartment throughout the persistent phase of infection. Analysis of CD4+ T cell responses to individual epitopes from EBV latent and lytic cycle proteins confirms the observation that the majority of the effector cells express both CD27 and CD28, although CD4+ T cells specific for lytic cycle antigens have a greater tendency to express CD45RA than those specific for the latent antigens. In clear contrast, effector CD4+ T cells specific for cytomegalovirus (CMV) accumulate within the CD27− CD28+ and CD27− CD28− compartments. There are striking parallels in terms of the differentiation of CD8+ T cells specific for EBV and CMV. The results challenge current ideas on the definition of memory subsets.


Sign in / Sign up

Export Citation Format

Share Document